Smart Nanosilver Strikes Twice: Precision Bacteria Killing Meets Autophagy-Boosted Healing for Infected Wounds

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jiaojiao Zhu, Qingya Zeng, Yutian Liu, Yilan Lin, Ding Ma, Tiao Wen, Pei Li, Wenhu Zhou
{"title":"Smart Nanosilver Strikes Twice: Precision Bacteria Killing Meets Autophagy-Boosted Healing for Infected Wounds","authors":"Jiaojiao Zhu, Qingya Zeng, Yutian Liu, Yilan Lin, Ding Ma, Tiao Wen, Pei Li, Wenhu Zhou","doi":"10.1002/adfm.202507797","DOIUrl":null,"url":null,"abstract":"Effective management of infected chronic wounds requires innovative strategies that combine precise antibacterial action with microenvironment reprogramming. Here, a pH-responsive core-shell nanosilver platform (PST/Ag) is reported that exploits structural disparities between bacterial and mammalian cells to achieve dual therapeutic effects. The PST/Ag selectively adheres to bacterial membranes and rapidly releases Ag<sup>+</sup> via pH-responsive dissolution in the acidic infection niche, achieving multimodal bactericidal effects while mitigating resistance risks. Crucially, PST/Ag minimizes off-target toxicity through disparity-driven cellular trafficking: reduced endocytosis in skin cells confines Ag<sup>+</sup> release within lysosomal compartments, where Ag<sup>+</sup> is dynamically reduced to secondary nanoparticles, ensuring sustained sub-toxic Ag<sup>+</sup> flux. This controlled release triggers a Hormesis effect—low-dose Ag<sup>+</sup> activates protective autophagy, synergizing with polyserotonin shell-derived metabolites to enhance fibroblast migration, angiogenesis, and extracellular matrix remodeling. In murine-infected wound and rabbit wound models, PST/Ag outperforms conventional silver nanoparticles by concurrently eradicating bacteria, accelerating re-epithelialization, and preventing scar formation. This “defense-regulation” dual modality—precision antibacterial coupled with microenvironment reprogramming—redefines nanosilver-based wound management paradigms, offering a translatable solution for complex tissue repair.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"10 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202507797","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Effective management of infected chronic wounds requires innovative strategies that combine precise antibacterial action with microenvironment reprogramming. Here, a pH-responsive core-shell nanosilver platform (PST/Ag) is reported that exploits structural disparities between bacterial and mammalian cells to achieve dual therapeutic effects. The PST/Ag selectively adheres to bacterial membranes and rapidly releases Ag+ via pH-responsive dissolution in the acidic infection niche, achieving multimodal bactericidal effects while mitigating resistance risks. Crucially, PST/Ag minimizes off-target toxicity through disparity-driven cellular trafficking: reduced endocytosis in skin cells confines Ag+ release within lysosomal compartments, where Ag+ is dynamically reduced to secondary nanoparticles, ensuring sustained sub-toxic Ag+ flux. This controlled release triggers a Hormesis effect—low-dose Ag+ activates protective autophagy, synergizing with polyserotonin shell-derived metabolites to enhance fibroblast migration, angiogenesis, and extracellular matrix remodeling. In murine-infected wound and rabbit wound models, PST/Ag outperforms conventional silver nanoparticles by concurrently eradicating bacteria, accelerating re-epithelialization, and preventing scar formation. This “defense-regulation” dual modality—precision antibacterial coupled with microenvironment reprogramming—redefines nanosilver-based wound management paradigms, offering a translatable solution for complex tissue repair.

Abstract Image

智能纳米银打击两次:精确的细菌杀死满足自噬促进愈合感染的伤口
感染慢性伤口的有效管理需要创新的策略,将精确的抗菌作用与微环境重编程相结合。本文报道了一种ph响应核壳纳米银平台(PST/Ag),利用细菌和哺乳动物细胞之间的结构差异来实现双重治疗效果。PST/Ag选择性粘附在细菌膜上,并通过ph响应性溶解在酸性感染生态位中快速释放Ag+,实现多模式杀菌效果,同时降低耐药风险。至关重要的是,PST/Ag通过差异驱动的细胞运输将脱靶毒性降至最低:皮肤细胞内吞作用的减少限制了溶酶体腔室内银离子的释放,在溶酶体腔室中,银离子被动态还原为次级纳米颗粒,确保了持续的亚毒性银离子通量。这种控制释放触发激效效应——低剂量Ag+激活保护性自噬,与多血清素壳源代谢物协同作用,增强成纤维细胞迁移、血管生成和细胞外基质重塑。在小鼠感染伤口和家兔伤口模型中,PST/Ag在同时根除细菌、加速再上皮化和防止疤痕形成方面优于传统的银纳米颗粒。这种“防御-调节”双重模式-精确抗菌与微环境重编程-重新定义了基于纳米银的伤口管理范例,为复杂的组织修复提供了可翻译的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信