Multi-Path ROS Storm and Immune Activation via Sulfur Vacancy-Optimized ZnIn2S4 Nanosheets for Piezocatalytic Tumor Therapy

IF 16.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Mingkai Yang, Binbin Ding, Xinyu Ma, Jing Li, Di Han, Sainan Liu, Zhendong Liu, Jia Tan, Hao Chen, Pan Zheng, Ping'an Ma, Jun Lin
{"title":"Multi-Path ROS Storm and Immune Activation via Sulfur Vacancy-Optimized ZnIn2S4 Nanosheets for Piezocatalytic Tumor Therapy","authors":"Mingkai Yang, Binbin Ding, Xinyu Ma, Jing Li, Di Han, Sainan Liu, Zhendong Liu, Jia Tan, Hao Chen, Pan Zheng, Ping'an Ma, Jun Lin","doi":"10.1002/anie.202507502","DOIUrl":null,"url":null,"abstract":"Piezoecatalytic therapy is a novel therapeutic strategy that uses mechanical energy to drive catalytic reactions to generate cytotoxic reactive oxygen species (ROS). However, existing materials are limited by low intrinsic catalytic efficiency and a single route to ROS production. This makes it difficult to break through the antioxidant barrier of the tumor microenvironment, which severely limits the antitumor efficacy. Herein, we synthesized sulfur vacancy (Sv)-engineered ZnIn2S4 nanosheets (ZIS-2/4/8) by adjusting the concentrations of sulfur source thioacetamide (TAA). The increase in Sv concentration simultaneously achieved the optimization of the energy band structure and the enhancement of the piezoelectric performance (d33 from 21.6 to 46.7 mV/V). Under US irradiation, Sv-ZnIn2S4 can efficiently generate ROS storms via multiple pathways, including ·O2-, 1O2, ·OH and H2O2, which overcome the limitations of the tumor microenvironment and achieved effective tumor cell killing. In addition, the ROS storm induced by the US can also initiate immunogenic cell death (ICD), promoting dendritic cells (DCs) maturation and CD8⁺ T cells infiltration. This multi-pathway ROS burst strategy not only breaks through tumor antioxidant defenses, but also induces ICD to form a cascade of immune responses. This demonstrates the advantages of combining piezocatalytic and immunotherapy.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"12 1","pages":""},"PeriodicalIF":16.9000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202507502","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Piezoecatalytic therapy is a novel therapeutic strategy that uses mechanical energy to drive catalytic reactions to generate cytotoxic reactive oxygen species (ROS). However, existing materials are limited by low intrinsic catalytic efficiency and a single route to ROS production. This makes it difficult to break through the antioxidant barrier of the tumor microenvironment, which severely limits the antitumor efficacy. Herein, we synthesized sulfur vacancy (Sv)-engineered ZnIn2S4 nanosheets (ZIS-2/4/8) by adjusting the concentrations of sulfur source thioacetamide (TAA). The increase in Sv concentration simultaneously achieved the optimization of the energy band structure and the enhancement of the piezoelectric performance (d33 from 21.6 to 46.7 mV/V). Under US irradiation, Sv-ZnIn2S4 can efficiently generate ROS storms via multiple pathways, including ·O2-, 1O2, ·OH and H2O2, which overcome the limitations of the tumor microenvironment and achieved effective tumor cell killing. In addition, the ROS storm induced by the US can also initiate immunogenic cell death (ICD), promoting dendritic cells (DCs) maturation and CD8⁺ T cells infiltration. This multi-pathway ROS burst strategy not only breaks through tumor antioxidant defenses, but also induces ICD to form a cascade of immune responses. This demonstrates the advantages of combining piezocatalytic and immunotherapy.
硫空位优化ZnIn2S4纳米片的多路径ROS风暴和免疫激活用于压电催化肿瘤治疗
压电催化疗法是一种利用机械能驱动催化反应产生细胞毒性活性氧(ROS)的新型治疗策略。然而,现有的材料受到固有催化效率低和生成活性氧途径单一的限制。这使得肿瘤微环境的抗氧化屏障难以突破,严重限制了抗肿瘤效果。本文通过调节硫源硫乙酰胺(TAA)的浓度,合成了硫空位(Sv)工程ZnIn2S4纳米片(ZIS-2/4/8)。Sv浓度的增加同时实现了能带结构的优化和压电性能的增强(d33从21.6 mV/V提高到46.7 mV/V)。在US照射下,Sv-ZnIn2S4能够通过·O2-、1O2、·OH和H2O2等多种途径高效产生ROS风暴,克服了肿瘤微环境的限制,实现了有效的肿瘤细胞杀伤。此外,US诱导的ROS风暴还能启动免疫原性细胞死亡(ICD),促进树突状细胞(DCs)成熟和CD8 + T细胞浸润。这种多途径ROS爆发策略不仅突破了肿瘤的抗氧化防御,而且诱导ICD形成级联免疫反应。这证明了压电催化与免疫治疗相结合的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信