Jiamin Li, Meng Huang, Juan Hou, Xingbin Wang, Gaopeng Xu, Yi Yang, Ning Mo, Yun Shi, Laichang Zhang, Weineng Tang
{"title":"Excellent strength-ductility synergy property of wire-arc additively manufactured Mg-Gd-Y-Zr alloy investigated by heat treatment","authors":"Jiamin Li, Meng Huang, Juan Hou, Xingbin Wang, Gaopeng Xu, Yi Yang, Ning Mo, Yun Shi, Laichang Zhang, Weineng Tang","doi":"10.1016/j.jma.2025.03.026","DOIUrl":null,"url":null,"abstract":"In this work, the GW63K (Mg-6.54Gd-3.93Y-0.41Zr, wt.%) alloy wire was utilized as the feedstock material and the thin-walled component was fabricated using wire-arc additive manufacturing technology (WAAM). The microstructural evolution during deposition and subsequent heat treatment was explained through multi-scale microstructural characterization techniques, and the impact of heat treatment on the strength-ductility synergy of the deposited alloy was systematically compared. The results showed that the microstructure of the deposited sample was mainly composed of fine equiaxed α-Mg grains and Mg<sub>24</sub>(Gd,Y)<sub>5</sub> phase. The optimized solution heat treatment (450 °<em>C</em> × 2 h) had little effect on the grain size, but can effectively reduce the Mg<sub>24</sub>(Gd,Y)<sub>5</sub> eutectic phase on the grain boundary, resulting in a significant increase in elongation from 13.7% to 26.6%. After peak-aging treatment, the strength of the GW63K alloy increased to 370 MPa, which was significantly higher than the as-built state (267 MPa). The superior strength in this study is attributed to the refinement strengthening imparted by the fine microstructure inherited in the as-built GW63K alloy, as well as the precipitation strengthening due to the formation of dense β' precipitates with a pronounced plate-like aspect ratio.","PeriodicalId":16214,"journal":{"name":"Journal of Magnesium and Alloys","volume":"88 1","pages":""},"PeriodicalIF":13.8000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnesium and Alloys","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jma.2025.03.026","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, the GW63K (Mg-6.54Gd-3.93Y-0.41Zr, wt.%) alloy wire was utilized as the feedstock material and the thin-walled component was fabricated using wire-arc additive manufacturing technology (WAAM). The microstructural evolution during deposition and subsequent heat treatment was explained through multi-scale microstructural characterization techniques, and the impact of heat treatment on the strength-ductility synergy of the deposited alloy was systematically compared. The results showed that the microstructure of the deposited sample was mainly composed of fine equiaxed α-Mg grains and Mg24(Gd,Y)5 phase. The optimized solution heat treatment (450 °C × 2 h) had little effect on the grain size, but can effectively reduce the Mg24(Gd,Y)5 eutectic phase on the grain boundary, resulting in a significant increase in elongation from 13.7% to 26.6%. After peak-aging treatment, the strength of the GW63K alloy increased to 370 MPa, which was significantly higher than the as-built state (267 MPa). The superior strength in this study is attributed to the refinement strengthening imparted by the fine microstructure inherited in the as-built GW63K alloy, as well as the precipitation strengthening due to the formation of dense β' precipitates with a pronounced plate-like aspect ratio.
期刊介绍:
The Journal of Magnesium and Alloys serves as a global platform for both theoretical and experimental studies in magnesium science and engineering. It welcomes submissions investigating various scientific and engineering factors impacting the metallurgy, processing, microstructure, properties, and applications of magnesium and alloys. The journal covers all aspects of magnesium and alloy research, including raw materials, alloy casting, extrusion and deformation, corrosion and surface treatment, joining and machining, simulation and modeling, microstructure evolution and mechanical properties, new alloy development, magnesium-based composites, bio-materials and energy materials, applications, and recycling.