Controllable interlocking from irregularity in two-phase composites

IF 17.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Matter Pub Date : 2025-06-10 DOI:10.1016/j.matt.2025.102201
Chelsea Fox, Kyrillos Bastawros, Tommaso Magrini, Chiara Daraio
{"title":"Controllable interlocking from irregularity in two-phase composites","authors":"Chelsea Fox, Kyrillos Bastawros, Tommaso Magrini, Chiara Daraio","doi":"10.1016/j.matt.2025.102201","DOIUrl":null,"url":null,"abstract":"Inspired by strong and tough biological materials, we present composite materials with controllable interlocking. The composites feature tessellations of stiff particles connected by a soft matrix, and we control the degree of interlocking through irregularity in particle size, geometry, and arrangement. We generate the composites through stochastic network growth using an average network coordination number. The generated network forms the soft matrix phase of the composites, while the areas enclosed by the network form the stiff reinforcing particles. At low coordination, composites feature highly polydisperse particles with irregular geometries arranged non-periodically. In response to loading, these particles interlock and primarily rotate and deform to accommodate non-uniform kinematic constraints from adjacent particles. In contrast, higher-coordination composites feature more monodisperse particles with uniform geometries, which collectively slide. We quantify how to control the degree of interlocking as a function of coordination number alone, demonstrating how irregularity facilitates bioinspired deformation mechanism control.","PeriodicalId":388,"journal":{"name":"Matter","volume":"35 1","pages":""},"PeriodicalIF":17.3000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.matt.2025.102201","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Inspired by strong and tough biological materials, we present composite materials with controllable interlocking. The composites feature tessellations of stiff particles connected by a soft matrix, and we control the degree of interlocking through irregularity in particle size, geometry, and arrangement. We generate the composites through stochastic network growth using an average network coordination number. The generated network forms the soft matrix phase of the composites, while the areas enclosed by the network form the stiff reinforcing particles. At low coordination, composites feature highly polydisperse particles with irregular geometries arranged non-periodically. In response to loading, these particles interlock and primarily rotate and deform to accommodate non-uniform kinematic constraints from adjacent particles. In contrast, higher-coordination composites feature more monodisperse particles with uniform geometries, which collectively slide. We quantify how to control the degree of interlocking as a function of coordination number alone, demonstrating how irregularity facilitates bioinspired deformation mechanism control.

Abstract Image

两相复合材料中不规则性引起的可控联锁
我们的灵感来自于坚韧的生物材料,我们提出了具有可控联锁的复合材料。复合材料的特点是由软基质连接的硬颗粒镶嵌,我们通过颗粒大小、几何形状和排列的不规则性来控制联锁的程度。我们使用平均网络配位数,通过随机网络增长生成复合材料。生成的网状物形成了复合材料的软基体相,而被网状物包围的区域形成了硬质增强颗粒。在低配位下,复合材料具有高度多分散的不规则几何形状的非周期性排列的颗粒。作为对加载的响应,这些颗粒互锁,主要是旋转和变形,以适应邻近颗粒的非均匀运动约束。相比之下,高配位复合材料具有更多具有均匀几何形状的单分散颗粒,它们集体滑动。我们量化了如何控制联锁程度作为配位数的函数,展示了不规则性如何促进生物变形机制的控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Matter
Matter MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
26.30
自引率
2.60%
发文量
367
期刊介绍: Matter, a monthly journal affiliated with Cell, spans the broad field of materials science from nano to macro levels,covering fundamentals to applications. Embracing groundbreaking technologies,it includes full-length research articles,reviews, perspectives,previews, opinions, personnel stories, and general editorial content. Matter aims to be the primary resource for researchers in academia and industry, inspiring the next generation of materials scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信