Zhenjiang Gu, Long Jiang, Zihan Ma, Yi Jiang, Peiliang Shen, Chi Sun Poon
{"title":"Achieving instantaneous activation of recycled concrete powder by hyper-gravity carbonation","authors":"Zhenjiang Gu, Long Jiang, Zihan Ma, Yi Jiang, Peiliang Shen, Chi Sun Poon","doi":"10.1016/j.cemconcomp.2025.106177","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, a hyper-gravity environment was used for carbonation, aiming at achieving rapid carbonation for activating recycled concrete powder (RCP). The degree of carbonation, mineralogical changes, and microstructural evolution of the RCP during hyper-gravity carbonation (HGC) were monitored and compared with normal carbonation (NC). The results showed that HGC exhibited a carbonation rate 30 times higher than that of NC in 10 min, including the precipitation of 71.1 % calcium carbonate (Cc) and 95.08 % fully polymerized Q<sup>4</sup> silicate. In HGC, RCP developed a unique structure characterized by a Cc shell and a silica core. HGC could overcome the gas/solid-liquid limiting steps in NC with its ultra-high mass transfer rates and shear forces, allowing for simultaneous and efficient dissolution and carbonation. The proposed HGC method provides a significant advancement in the joint fields of industrial CO<sub>2</sub> capture and waste concrete recycling.</div></div>","PeriodicalId":9865,"journal":{"name":"Cement & concrete composites","volume":"163 ","pages":"Article 106177"},"PeriodicalIF":13.1000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cement & concrete composites","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0958946525002598","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, a hyper-gravity environment was used for carbonation, aiming at achieving rapid carbonation for activating recycled concrete powder (RCP). The degree of carbonation, mineralogical changes, and microstructural evolution of the RCP during hyper-gravity carbonation (HGC) were monitored and compared with normal carbonation (NC). The results showed that HGC exhibited a carbonation rate 30 times higher than that of NC in 10 min, including the precipitation of 71.1 % calcium carbonate (Cc) and 95.08 % fully polymerized Q4 silicate. In HGC, RCP developed a unique structure characterized by a Cc shell and a silica core. HGC could overcome the gas/solid-liquid limiting steps in NC with its ultra-high mass transfer rates and shear forces, allowing for simultaneous and efficient dissolution and carbonation. The proposed HGC method provides a significant advancement in the joint fields of industrial CO2 capture and waste concrete recycling.
期刊介绍:
Cement & concrete composites focuses on advancements in cement-concrete composite technology and the production, use, and performance of cement-based construction materials. It covers a wide range of materials, including fiber-reinforced composites, polymer composites, ferrocement, and those incorporating special aggregates or waste materials. Major themes include microstructure, material properties, testing, durability, mechanics, modeling, design, fabrication, and practical applications. The journal welcomes papers on structural behavior, field studies, repair and maintenance, serviceability, and sustainability. It aims to enhance understanding, provide a platform for unconventional materials, promote low-cost energy-saving materials, and bridge the gap between materials science, engineering, and construction. Special issues on emerging topics are also published to encourage collaboration between materials scientists, engineers, designers, and fabricators.