Phase separation instead of binding strength determines target specificities of MAGUKs

IF 12.9 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Yan Chen, Chenxue Ma, Zeyu Shen, Shiwen Chen, Shihan Zhu, Bowen Jia, Shangyu Dang, Mingjie Zhang
{"title":"Phase separation instead of binding strength determines target specificities of MAGUKs","authors":"Yan Chen, Chenxue Ma, Zeyu Shen, Shiwen Chen, Shihan Zhu, Bowen Jia, Shangyu Dang, Mingjie Zhang","doi":"10.1038/s41589-025-01925-0","DOIUrl":null,"url":null,"abstract":"<p>Homologous proteins often have distinct functions, even if they share overlapping binding targets. PSD-95 and MAGI-2, two membrane-associated guanylate kinase (MAGUK)-family scaffolds in neuronal synapses, exemplify this. With unknown mechanisms, the two MAGUKs are localized at distinct subsynaptic compartments with PSD-95 inside the postsynaptic density (PSD) and MAGI-2 outside. Here we demonstrate that MAGI-2 forms condensates through phase separation. When coexisting with PSD proteins, the MAGI-2 condensate can enrich the extrasynaptic N-cadherin–β-catenin adhesion complex and the MAGI-2 condensates are immiscible with the PSD-95 condensates. Surprisingly, phosphorylated SAPAP is selectively enriched in the PSD-95 condensate, even though it binds to MAGI-2 with a higher affinity. The specific localization of SAPAP is because of the higher network complexities of the PSD-95-containing condensate than the MAGI-2 condensate. Thus, phase-separation-mediated molecular condensate formation can generate a previously unrecognized mode of molecular interaction and subcellular localization specificities that do not occur in dilute solutions.</p><figure></figure>","PeriodicalId":18832,"journal":{"name":"Nature chemical biology","volume":"24 1","pages":""},"PeriodicalIF":12.9000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature chemical biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41589-025-01925-0","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Homologous proteins often have distinct functions, even if they share overlapping binding targets. PSD-95 and MAGI-2, two membrane-associated guanylate kinase (MAGUK)-family scaffolds in neuronal synapses, exemplify this. With unknown mechanisms, the two MAGUKs are localized at distinct subsynaptic compartments with PSD-95 inside the postsynaptic density (PSD) and MAGI-2 outside. Here we demonstrate that MAGI-2 forms condensates through phase separation. When coexisting with PSD proteins, the MAGI-2 condensate can enrich the extrasynaptic N-cadherin–β-catenin adhesion complex and the MAGI-2 condensates are immiscible with the PSD-95 condensates. Surprisingly, phosphorylated SAPAP is selectively enriched in the PSD-95 condensate, even though it binds to MAGI-2 with a higher affinity. The specific localization of SAPAP is because of the higher network complexities of the PSD-95-containing condensate than the MAGI-2 condensate. Thus, phase-separation-mediated molecular condensate formation can generate a previously unrecognized mode of molecular interaction and subcellular localization specificities that do not occur in dilute solutions.

Abstract Image

相分离而不是结合强度决定了maguk的靶特异性
同源蛋白通常具有不同的功能,即使它们具有重叠的结合靶标。PSD-95和MAGI-2是两个膜相关鸟苷酸激酶(MAGUK)家族在神经元突触中的支架,就是例证。由于机制未知,这两个MAGUKs定位于不同的亚突触区室,PSD-95在突触后密度(PSD)内,MAGI-2在外部。这里我们证明MAGI-2通过相分离形成凝析油。与PSD蛋白共存时,MAGI-2凝聚物可富集胞外N-cadherin -β-catenin黏附复合物,且MAGI-2凝聚物与PSD-95凝聚物不混溶。令人惊讶的是,磷酸化的SAPAP选择性地富集在PSD-95凝聚物中,尽管它以更高的亲和力与MAGI-2结合。SAPAP的特定定位是由于含有psd -95的凝析液比MAGI-2凝析液具有更高的网络复杂性。因此,相分离介导的分子凝聚形成可以产生先前未被识别的分子相互作用模式和亚细胞定位特异性,而这些在稀释溶液中不会发生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature chemical biology
Nature chemical biology 生物-生化与分子生物学
CiteScore
23.90
自引率
1.40%
发文量
238
审稿时长
12 months
期刊介绍: Nature Chemical Biology stands as an esteemed international monthly journal, offering a prominent platform for the chemical biology community to showcase top-tier original research and commentary. Operating at the crossroads of chemistry, biology, and related disciplines, chemical biology utilizes scientific ideas and approaches to comprehend and manipulate biological systems with molecular precision. The journal embraces contributions from the growing community of chemical biologists, encompassing insights from chemists applying principles and tools to biological inquiries and biologists striving to comprehend and control molecular-level biological processes. We prioritize studies unveiling significant conceptual or practical advancements in areas where chemistry and biology intersect, emphasizing basic research, especially those reporting novel chemical or biological tools and offering profound molecular-level insights into underlying biological mechanisms. Nature Chemical Biology also welcomes manuscripts describing applied molecular studies at the chemistry-biology interface due to the broad utility of chemical biology approaches in manipulating or engineering biological systems. Irrespective of scientific focus, we actively seek submissions that creatively blend chemistry and biology, particularly those providing substantial conceptual or methodological breakthroughs with the potential to open innovative research avenues. The journal maintains a robust and impartial review process, emphasizing thorough chemical and biological characterization.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信