Stochastic model of siRNA endosomal escape mediated by fusogenic peptides

IF 1.8 4区 数学 Q2 BIOLOGY
Nisha Yadav , Jessica Boulos , Angela Alexander-Bryant , Keisha Cook
{"title":"Stochastic model of siRNA endosomal escape mediated by fusogenic peptides","authors":"Nisha Yadav ,&nbsp;Jessica Boulos ,&nbsp;Angela Alexander-Bryant ,&nbsp;Keisha Cook","doi":"10.1016/j.mbs.2025.109476","DOIUrl":null,"url":null,"abstract":"<div><div>Gene silencing via small interfering RNA (siRNA) represents a transformative tool in cancer therapy, offering specificity and reduced off-target effects compared to conventional treatments. A crucial step in siRNA-based therapies is endosomal escape, the release of siRNA from endosomes into the cytoplasm. Quantifying endosomal escape is challenging due to the dynamic nature of the process and limitations in imaging and analytical techniques. Traditional methods often rely on fluorescence intensity measurements or manual image processing, which are time-intensive and fail to capture continuous dynamics. This paper presents a novel computational framework that integrates automated image processing to analyze time-lapse fluorescent microscopy data of endosomal escape, hierarchical Bayesian inference, and stochastic simulations. Our method employs image segmentation techniques such as binary masks, Gaussian filters, and multichannel color quantification to extract precise spatial and temporal data from microscopy images. Using a hierarchical Bayesian approach, we estimate the parameters of a compartmental model that describes endosomal escape dynamics, accounting for variability over time. These parameters inform a Gillespie stochastic simulation algorithm, ensuring realistic simulations of siRNA release events over time. By combining these techniques, our framework provides a scalable and reproducible method for quantifying endosomal escape. The model captures uncertainty and variability in parameter estimation, and endosomal escape dynamics. Additionally, synthetic data generation allows researchers to validate experimental findings and explore alternative conditions without extensive laboratory work. This integrated approach not only improves the accuracy of endosomal escape quantification but also provides predictive insights for optimizing siRNA delivery systems and advancing gene therapy research.</div></div>","PeriodicalId":51119,"journal":{"name":"Mathematical Biosciences","volume":"387 ","pages":"Article 109476"},"PeriodicalIF":1.8000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Biosciences","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025556425001026","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Gene silencing via small interfering RNA (siRNA) represents a transformative tool in cancer therapy, offering specificity and reduced off-target effects compared to conventional treatments. A crucial step in siRNA-based therapies is endosomal escape, the release of siRNA from endosomes into the cytoplasm. Quantifying endosomal escape is challenging due to the dynamic nature of the process and limitations in imaging and analytical techniques. Traditional methods often rely on fluorescence intensity measurements or manual image processing, which are time-intensive and fail to capture continuous dynamics. This paper presents a novel computational framework that integrates automated image processing to analyze time-lapse fluorescent microscopy data of endosomal escape, hierarchical Bayesian inference, and stochastic simulations. Our method employs image segmentation techniques such as binary masks, Gaussian filters, and multichannel color quantification to extract precise spatial and temporal data from microscopy images. Using a hierarchical Bayesian approach, we estimate the parameters of a compartmental model that describes endosomal escape dynamics, accounting for variability over time. These parameters inform a Gillespie stochastic simulation algorithm, ensuring realistic simulations of siRNA release events over time. By combining these techniques, our framework provides a scalable and reproducible method for quantifying endosomal escape. The model captures uncertainty and variability in parameter estimation, and endosomal escape dynamics. Additionally, synthetic data generation allows researchers to validate experimental findings and explore alternative conditions without extensive laboratory work. This integrated approach not only improves the accuracy of endosomal escape quantification but also provides predictive insights for optimizing siRNA delivery systems and advancing gene therapy research.
融合肽介导siRNA内体逃逸的随机模型。
通过小干扰RNA (siRNA)进行基因沉默是癌症治疗中的一种变革性工具,与传统治疗相比,它提供了特异性和减少脱靶效应。siRNA疗法的关键一步是内体逃逸,即siRNA从内体释放到细胞质中。由于过程的动态性和成像和分析技术的局限性,量化内体逃逸是具有挑战性的。传统的方法往往依赖于荧光强度测量或人工图像处理,这是费时的,不能捕捉连续的动态。本文提出了一个新的计算框架,集成了自动图像处理来分析内体逃逸的延时荧光显微镜数据,分层贝叶斯推理和随机模拟。我们的方法采用图像分割技术,如二值掩模、高斯滤波器和多通道颜色量化,从显微镜图像中提取精确的时空数据。使用分层贝叶斯方法,我们估计了描述内体逃逸动力学的室室模型的参数,考虑了随时间的变化。这些参数告知Gillespie随机模拟算法,确保siRNA释放事件随时间的真实模拟。通过结合这些技术,我们的框架提供了一种可扩展和可重复的方法来量化内体逃逸。该模型捕获了参数估计中的不确定性和可变性,以及内体逃逸动力学。此外,合成数据生成允许研究人员验证实验结果并探索替代条件,而无需大量的实验室工作。这种综合方法不仅提高了内体逃逸定量的准确性,而且为优化siRNA传递系统和推进基因治疗研究提供了预测性见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematical Biosciences
Mathematical Biosciences 生物-生物学
CiteScore
7.50
自引率
2.30%
发文量
67
审稿时长
18 days
期刊介绍: Mathematical Biosciences publishes work providing new concepts or new understanding of biological systems using mathematical models, or methodological articles likely to find application to multiple biological systems. Papers are expected to present a major research finding of broad significance for the biological sciences, or mathematical biology. Mathematical Biosciences welcomes original research articles, letters, reviews and perspectives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信