An investigation of multimodal EMG-EEG fusion strategies for upper-limb gesture classification.

IF 3.8
Michael Pritchard, Felipe Campelo, Harry Goldingay
{"title":"An investigation of multimodal EMG-EEG fusion strategies for upper-limb gesture classification.","authors":"Michael Pritchard, Felipe Campelo, Harry Goldingay","doi":"10.1088/1741-2552/ade1f9","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective</i>. Upper-limb gesture identification is an important problem in the advancement of robotic prostheses. Prevailing research into classifying electromyographic (EMG) muscular data or electroencephalographic (EEG) brain data for this purpose is often limited in methodological rigour, the extent to which generalisation is demonstrated, and the granularity of gestures classified. This work evaluates three architectures for multimodal fusion of EMG & EEG data in gesture classification, including a novel Hierarchical strategy, in both subject-specific and subject-independent settings.<i>Approach</i>. We propose an unbiased methodology for designing classifiers centred on Automated Machine Learning through Combined Algorithm Selection & Hyperparameter Optimisation (CASH); the first application of this technique to the biosignal domain. Using CASH, we introduce an end-to-end pipeline for data handling, algorithm development, modelling, and fair comparison, addressing established weaknesses among biosignal literature.<i>Main results</i>. EMG-EEG fusion is shown to provide significantly higher subject-independent accuracy in same-hand multi-gesture classification than an equivalent EMG classifier. Our CASH-based design methodology produces a more accurate subject-specific classifier design than recommended by literature. Our novel Hierarchical ensemble of classical models outperforms a domain-standard CNN architecture. We achieve a subject-independent EEG multiclass accuracy competitive with many subject-specific approaches used for similar, or more easily separable, problems.<i>Significance</i>. To our knowledge, this is the first work to establish a systematic framework for automatic, unbiased designing and testing of fusion architectures in the context of multimodal biosignal classification. We demonstrate a robust end-to-end modelling pipeline for biosignal classification problems which if adopted in future research can help address the risk of bias common in multimodal BCI studies , enabling more reliable and rigorous comparison of proposed classifiers than is usual in the domain. We apply the approach to a more complex task than typical of EMG-EEG fusion research, surpassing literature-recommended designs and verifying the efficacy of a novel Hierarchical fusion architecture.</p>","PeriodicalId":94096,"journal":{"name":"Journal of neural engineering","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neural engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1741-2552/ade1f9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Objective. Upper-limb gesture identification is an important problem in the advancement of robotic prostheses. Prevailing research into classifying electromyographic (EMG) muscular data or electroencephalographic (EEG) brain data for this purpose is often limited in methodological rigour, the extent to which generalisation is demonstrated, and the granularity of gestures classified. This work evaluates three architectures for multimodal fusion of EMG & EEG data in gesture classification, including a novel Hierarchical strategy, in both subject-specific and subject-independent settings.Approach. We propose an unbiased methodology for designing classifiers centred on Automated Machine Learning through Combined Algorithm Selection & Hyperparameter Optimisation (CASH); the first application of this technique to the biosignal domain. Using CASH, we introduce an end-to-end pipeline for data handling, algorithm development, modelling, and fair comparison, addressing established weaknesses among biosignal literature.Main results. EMG-EEG fusion is shown to provide significantly higher subject-independent accuracy in same-hand multi-gesture classification than an equivalent EMG classifier. Our CASH-based design methodology produces a more accurate subject-specific classifier design than recommended by literature. Our novel Hierarchical ensemble of classical models outperforms a domain-standard CNN architecture. We achieve a subject-independent EEG multiclass accuracy competitive with many subject-specific approaches used for similar, or more easily separable, problems.Significance. To our knowledge, this is the first work to establish a systematic framework for automatic, unbiased designing and testing of fusion architectures in the context of multimodal biosignal classification. We demonstrate a robust end-to-end modelling pipeline for biosignal classification problems which if adopted in future research can help address the risk of bias common in multimodal BCI studies , enabling more reliable and rigorous comparison of proposed classifiers than is usual in the domain. We apply the approach to a more complex task than typical of EMG-EEG fusion research, surpassing literature-recommended designs and verifying the efficacy of a novel Hierarchical fusion architecture.

多模态肌电脑融合策略在上肢手势分类中的研究。
目的:上肢手势识别是机器人假肢发展中的一个重要问题。目前对肌电图(EMG)肌肉数据或脑电图(EEG)大脑数据进行分类的主流研究通常在方法的严谨性、概括证明的程度以及手势分类的粒度方面受到限制。这项工作评估了手势分类中肌电和脑电图数据多模态融合的三种架构,包括一种新的分层策略,适用于特定主题和独立主题的设置。方法:我们提出了一种无偏的方法,通过组合算法选择和超参数优化(CASH)设计以自动机器学习为中心的分类器;该技术首次应用于生物信号领域。使用CASH,我们引入了一个端到端数据处理、算法开发、建模和公平比较的管道,解决了生物信号文献中存在的弱点。主要结果:与等效的肌电分类器相比,肌电-脑电融合在同手多手势分类中提供了显着更高的独立于主体的准确性。我们基于cash的设计方法产生了比文献推荐的更准确的特定主题分类器设计。我们新颖的经典模型的分层集成优于领域标准的CNN架构。我们实现了一个独立于主题的EEG多类精度,与许多用于类似或更容易分离的问题的特定主题方法相竞争。意义:据我们所知,这是第一个为多模态生物信号分类背景下的融合架构的自动、无偏设计和测试建立系统框架的工作。我们展示了一个强大的端到端生物信号分类问题建模管道,如果在未来的研究中采用,可以帮助解决多模态脑机接口研究中常见的偏差风险,使所提出的分类器比通常在该领域进行更可靠和严格的比较。我们将该方法应用于比典型的肌电-脑电图融合研究更复杂的任务,超越了文献推荐的设计,并验证了新型分层融合架构的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信