Hassan Ayaz, Muhammad Suleman, Asad Ali Shah, Syed Ainul Abideen, Faisal Ahmad, Muhammad Ali, Sajjad Ahmad, Asia Nawaz, Hanbal Ahmad Khan, Inam Hussain, Muhammad Irfan, Yasir Waheed
{"title":"Molecular modeling to design a multiepitope vaccine against emerging tick-borne Yezo virus and its validation through biophysics techniques.","authors":"Hassan Ayaz, Muhammad Suleman, Asad Ali Shah, Syed Ainul Abideen, Faisal Ahmad, Muhammad Ali, Sajjad Ahmad, Asia Nawaz, Hanbal Ahmad Khan, Inam Hussain, Muhammad Irfan, Yasir Waheed","doi":"10.1007/s40203-025-00370-0","DOIUrl":null,"url":null,"abstract":"<p><p>Globally, tickborne orthonairoviruses are regarded as a danger to public health. The new infectious virus known as Yezo virus, which is spread by tick bites, produces a condition marked by fever and a decrease in leucocytes and blood platelets. We suggest a multiepitope vaccination design that makes use of immunoinformatics technologies to combat this new danger. Sequences from Yezo virus proteins were gathered, and they allowed us to identify T-cell and linear B-cell epitopes. The vaccine design showed good physical and chemical characteristics as well as allergenicity and antigenicity. Simulations of molecular docking revealed robust contact with toll-like receptor 4. The HDOCK server generated the docking scores for protein interactions i.e. -295.74 kcal/mol for the epitopes in combined form: -281.98 kcal/mol by the epitopes obtained from nucleoprotein, and epitopes obtained from the glycoprotein shows - 262.67 kcal/mol in response to TLR4. The dynamic analysis of vaccine binding with these receptors was conducted with regards to interaction energetics and complex stability. Results showed that vaccine construct was stable throughout the simulation time intervals with strong hydrogen bonds interactions with TLR4 receptor residues. Lastly, we hypothesize that the vaccination sequence described here has a great chance of eliciting particular and protective immune responses, pending assessment of further experimental investigation.</p><p><strong>Graphical abstract: </strong></p>","PeriodicalId":94038,"journal":{"name":"In silico pharmacology","volume":"13 2","pages":"80"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12141707/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"In silico pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40203-025-00370-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Globally, tickborne orthonairoviruses are regarded as a danger to public health. The new infectious virus known as Yezo virus, which is spread by tick bites, produces a condition marked by fever and a decrease in leucocytes and blood platelets. We suggest a multiepitope vaccination design that makes use of immunoinformatics technologies to combat this new danger. Sequences from Yezo virus proteins were gathered, and they allowed us to identify T-cell and linear B-cell epitopes. The vaccine design showed good physical and chemical characteristics as well as allergenicity and antigenicity. Simulations of molecular docking revealed robust contact with toll-like receptor 4. The HDOCK server generated the docking scores for protein interactions i.e. -295.74 kcal/mol for the epitopes in combined form: -281.98 kcal/mol by the epitopes obtained from nucleoprotein, and epitopes obtained from the glycoprotein shows - 262.67 kcal/mol in response to TLR4. The dynamic analysis of vaccine binding with these receptors was conducted with regards to interaction energetics and complex stability. Results showed that vaccine construct was stable throughout the simulation time intervals with strong hydrogen bonds interactions with TLR4 receptor residues. Lastly, we hypothesize that the vaccination sequence described here has a great chance of eliciting particular and protective immune responses, pending assessment of further experimental investigation.