SPaSE: Spatially resolved pathology scores using optimal transport on spatial transcriptomics data.

Mohammad Nuwaisir Rahman, Mohammed Abid Abrar, Vikram Rakesh Shaw, James F Martin, M Saifur Rahman, Md Abul Hassan Samee
{"title":"SPaSE: Spatially resolved pathology scores using optimal transport on spatial transcriptomics data.","authors":"Mohammad Nuwaisir Rahman, Mohammed Abid Abrar, Vikram Rakesh Shaw, James F Martin, M Saifur Rahman, Md Abul Hassan Samee","doi":"10.1016/j.cels.2025.101301","DOIUrl":null,"url":null,"abstract":"<p><p>Pathological events often impact tissue regions in a spatially variable manner, making it challenging to identify therapeutic targets. Spatial transcriptomics (ST) is a powerful technology to map spatially variable molecular mechanisms, yet suitable analytical methods have been lacking. We introduce spatially resolved pathology score (SPaSE), an optimal transport-based algorithm to compare ST data from diseased and control tissues. SPaSE computes a \"pathology score\" for each spot in the diseased sample, quantifying the pathological impact at that spot. In post-myocardial infarction (post-MI) mouse hearts, these scores delineated zones that matched independent expert annotations. Modeling pathology scores from gene expression revealed signatures predictive of varying pathological severity. The scoring model learned from mouse data showed accurate predictions on human post-MI data. We also demonstrated SPaSE's efficacy on additional simulated and real ST data from traumatic brain injury and Duchenne muscular dystrophy mouse models. SPaSE is a useful addition to the existing ST algorithms. A record of this paper's transparent peer review process is included in the supplemental information.</p>","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":" ","pages":"101301"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.cels.2025.101301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Pathological events often impact tissue regions in a spatially variable manner, making it challenging to identify therapeutic targets. Spatial transcriptomics (ST) is a powerful technology to map spatially variable molecular mechanisms, yet suitable analytical methods have been lacking. We introduce spatially resolved pathology score (SPaSE), an optimal transport-based algorithm to compare ST data from diseased and control tissues. SPaSE computes a "pathology score" for each spot in the diseased sample, quantifying the pathological impact at that spot. In post-myocardial infarction (post-MI) mouse hearts, these scores delineated zones that matched independent expert annotations. Modeling pathology scores from gene expression revealed signatures predictive of varying pathological severity. The scoring model learned from mouse data showed accurate predictions on human post-MI data. We also demonstrated SPaSE's efficacy on additional simulated and real ST data from traumatic brain injury and Duchenne muscular dystrophy mouse models. SPaSE is a useful addition to the existing ST algorithms. A record of this paper's transparent peer review process is included in the supplemental information.

SPaSE:在空间转录组学数据上使用最佳转运的空间解决病理评分。
病理事件通常以空间可变的方式影响组织区域,这使得确定治疗靶点具有挑战性。空间转录组学(ST)是一种绘制空间可变分子机制的强大技术,但缺乏合适的分析方法。我们引入了空间分解病理评分(SPaSE),这是一种基于传输的最佳算法,用于比较患病组织和对照组织的ST数据。SPaSE计算患病样本中每个点的“病理评分”,量化该点的病理影响。在心肌梗死后的小鼠心脏中,这些分数描绘了与独立专家注释相匹配的区域。基于基因表达的建模病理评分揭示了预测不同病理严重程度的特征。从小鼠数据中学习的评分模型对人类心肌梗死后的数据有准确的预测。我们还在创伤性脑损伤和杜氏肌营养不良小鼠模型的模拟和真实ST数据上证明了SPaSE的有效性。SPaSE是对现有ST算法的有用补充。本文的透明同行评议过程记录包含在补充信息中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信