SpaLinker identifies phenotype-associated spatial tumor microenvironment features by integrating bulk and spatial sequencing data.

IF 11.1 Q1 CELL BIOLOGY
Cell genomics Pub Date : 2025-07-09 Epub Date: 2025-06-05 DOI:10.1016/j.xgen.2025.100893
Xiaojie Cheng, Chen Tang, Kejing Dong, Yuzhou You, Xueying Zhao, Bin Duan, Shaoqi Chen, Guohui Chuai, Zhenbo Zhang, Qi Liu
{"title":"SpaLinker identifies phenotype-associated spatial tumor microenvironment features by integrating bulk and spatial sequencing data.","authors":"Xiaojie Cheng, Chen Tang, Kejing Dong, Yuzhou You, Xueying Zhao, Bin Duan, Shaoqi Chen, Guohui Chuai, Zhenbo Zhang, Qi Liu","doi":"10.1016/j.xgen.2025.100893","DOIUrl":null,"url":null,"abstract":"<p><p>The emergence of spatial transcriptomics (ST) technology offers unprecedented opportunities to elucidate the complexity and heterogeneity of the tumor microenvironment (TME). However, quantitatively linking spatially resolved features with clinical phenotypes remains challenging due to the scarcity of clinical annotations of spatial sequencing samples. Herein, we introduce SpaLinker, an innovative integrated framework that utilizes ST data to decipher spatially resolved TMEs at molecular, cellular, and tissue structure levels. Specifically, it assesses the prognostic significance of spatially defined features by integrating well-accumulated bulk RNA sequencing (RNA-seq) data, using a phenotype-driven computational framework. Applying SpaLinker to diverse tumor ST datasets demonstrated its utility and effectiveness in recognizing spatial architectures, including tertiary lymphoid structures and tumor-normal interfaces, and in establishing links to distinct clinical outcomes. Overall, this study presents a valuable and comprehensive pan-cancer analytical platform to de novo identify phenotype-associated spatial TME features, significantly enhancing the clinical utility of spatial sequencing technology.</p>","PeriodicalId":72539,"journal":{"name":"Cell genomics","volume":" ","pages":"100893"},"PeriodicalIF":11.1000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12278630/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.xgen.2025.100893","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The emergence of spatial transcriptomics (ST) technology offers unprecedented opportunities to elucidate the complexity and heterogeneity of the tumor microenvironment (TME). However, quantitatively linking spatially resolved features with clinical phenotypes remains challenging due to the scarcity of clinical annotations of spatial sequencing samples. Herein, we introduce SpaLinker, an innovative integrated framework that utilizes ST data to decipher spatially resolved TMEs at molecular, cellular, and tissue structure levels. Specifically, it assesses the prognostic significance of spatially defined features by integrating well-accumulated bulk RNA sequencing (RNA-seq) data, using a phenotype-driven computational framework. Applying SpaLinker to diverse tumor ST datasets demonstrated its utility and effectiveness in recognizing spatial architectures, including tertiary lymphoid structures and tumor-normal interfaces, and in establishing links to distinct clinical outcomes. Overall, this study presents a valuable and comprehensive pan-cancer analytical platform to de novo identify phenotype-associated spatial TME features, significantly enhancing the clinical utility of spatial sequencing technology.

SpaLinker通过整合大量和空间测序数据来识别与表型相关的空间肿瘤微环境特征。
空间转录组学(ST)技术的出现为阐明肿瘤微环境(TME)的复杂性和异质性提供了前所未有的机会。然而,由于缺乏空间测序样本的临床注释,将空间解析特征与临床表型定量联系起来仍然具有挑战性。在此,我们介绍了SpaLinker,这是一个创新的集成框架,利用ST数据在分子、细胞和组织结构水平上破译空间分辨的tme。具体而言,它通过使用表型驱动的计算框架,整合大量RNA测序(RNA-seq)数据,评估空间定义特征的预后意义。将SpaLinker应用于不同的肿瘤ST数据集,证明了其在识别空间结构(包括三级淋巴组织结构和肿瘤-正常界面)以及建立与不同临床结果的联系方面的实用性和有效性。总之,本研究为重新确定与表型相关的空间TME特征提供了一个有价值的、全面的泛癌症分析平台,显著提高了空间测序技术的临床实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信