Shengxian Bi, Dandan Guo, Huawei Tan, Yingchun Chen, Gang Li
{"title":"Inequalities in Mild Cognitive Impairment Risk Among Chinese Middle-Aged and Older Adults: Insights from an Integrated Learning Model.","authors":"Shengxian Bi, Dandan Guo, Huawei Tan, Yingchun Chen, Gang Li","doi":"10.2147/RMHP.S519049","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>This study aims to address inequalities in mild cognitive impairment (MCI) risk among Chinese middle-aged and older adults by developing an integrated learning framework to predict MCI risk and identify key contributing factors.</p><p><strong>Methods: </strong>Using CHARLS data of 4626 participants, we developed a convolutional neural network-bidirectional long short-term memory-attention (CNN-BiLSTM-Attention) model to capture the temporal and spatial features of MCI progression. SHAP (Shapley Additive Explanations) analysis quantified feature importance and enhanced interpretability, while mediation analysis explored causal pathways, particularly focusing on the role of education. Model performance was compared with eight other frameworks, including LSTM-based models, using Receiver Operating Characteristic (ROC) curves and classification metrics.</p><p><strong>Results: </strong>The CNN-BiLSTM-Attention model demonstrated relatively promising predictive performance (AUC: 0.7317), with moderately high sensitivity (0.6902) and a high negative predictive value (NPV) of 0.9414. Education emerged as the most critical predictor, followed by Instrumental Activities of Daily Living (IADL) and gender. Mediation analysis revealed that education influenced MCI risk indirectly through health insurance, social interaction, physical activity, and depression.</p><p><strong>Conclusion: </strong>We present an interpretable, data-driven framework for predicting MCI risk while uncovering key inequality factors, particularly the pivotal role of education. The model's robust performance and interpretability highlight its potential to inform public health strategies and interventions aimed at addressing inequalities in dementia risk.</p>","PeriodicalId":56009,"journal":{"name":"Risk Management and Healthcare Policy","volume":"18 ","pages":"1793-1808"},"PeriodicalIF":2.7000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12145101/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Risk Management and Healthcare Policy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/RMHP.S519049","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: This study aims to address inequalities in mild cognitive impairment (MCI) risk among Chinese middle-aged and older adults by developing an integrated learning framework to predict MCI risk and identify key contributing factors.
Methods: Using CHARLS data of 4626 participants, we developed a convolutional neural network-bidirectional long short-term memory-attention (CNN-BiLSTM-Attention) model to capture the temporal and spatial features of MCI progression. SHAP (Shapley Additive Explanations) analysis quantified feature importance and enhanced interpretability, while mediation analysis explored causal pathways, particularly focusing on the role of education. Model performance was compared with eight other frameworks, including LSTM-based models, using Receiver Operating Characteristic (ROC) curves and classification metrics.
Results: The CNN-BiLSTM-Attention model demonstrated relatively promising predictive performance (AUC: 0.7317), with moderately high sensitivity (0.6902) and a high negative predictive value (NPV) of 0.9414. Education emerged as the most critical predictor, followed by Instrumental Activities of Daily Living (IADL) and gender. Mediation analysis revealed that education influenced MCI risk indirectly through health insurance, social interaction, physical activity, and depression.
Conclusion: We present an interpretable, data-driven framework for predicting MCI risk while uncovering key inequality factors, particularly the pivotal role of education. The model's robust performance and interpretability highlight its potential to inform public health strategies and interventions aimed at addressing inequalities in dementia risk.
期刊介绍:
Risk Management and Healthcare Policy is an international, peer-reviewed, open access journal focusing on all aspects of public health, policy and preventative measures to promote good health and improve morbidity and mortality in the population. Specific topics covered in the journal include:
Public and community health
Policy and law
Preventative and predictive healthcare
Risk and hazard management
Epidemiology, detection and screening
Lifestyle and diet modification
Vaccination and disease transmission/modification programs
Health and safety and occupational health
Healthcare services provision
Health literacy and education
Advertising and promotion of health issues
Health economic evaluations and resource management
Risk Management and Healthcare Policy focuses on human interventional and observational research. The journal welcomes submitted papers covering original research, clinical and epidemiological studies, reviews and evaluations, guidelines, expert opinion and commentary, and extended reports. Case reports will only be considered if they make a valuable and original contribution to the literature. The journal does not accept study protocols, animal-based or cell line-based studies.