Whole-genome sequencing analysis of Burkholderia pseudomallei comparing drug-resistant and pan-susceptible isolates reveals novel biomarkers for drug resistance
{"title":"Whole-genome sequencing analysis of Burkholderia pseudomallei comparing drug-resistant and pan-susceptible isolates reveals novel biomarkers for drug resistance","authors":"Yothin Hinwan , Nut Nithimongkolchai , Kanwara Trisakul , Benjawan Kaewseekhao , Lumyai Wonglakorn , Ploenchan Chetchotisakd , Sorujsiri Chareonsudjai , Auttawit Sirichoat , Arnone Nithichanon , Jody Phelan , Taane G. Clark , Kiatichai Faksri","doi":"10.1016/j.meegid.2025.105779","DOIUrl":null,"url":null,"abstract":"<div><div>Melioidosis, caused by the gram-negative bacterium <em>Burkholderia pseudomallei</em> (Bp), poses a significant health threat due to its potential for drug resistance, which can severely limit available treatment options. To investigate this, we conducted a comparative genomic analysis of 38 drug-resistant (DR) and 300 drug-susceptible (DS) Bp isolates to identify genetic markers associated with antimicrobial resistance. Our study identified seven significant single-nucleotide polymorphisms (SNPs) linked to drug resistance: two with ceftazidime (CAZ), and five with meropenem (MEM). Pathway analysis revealed that AMC resistance was associated with alterations in fatty-acid metabolism, whereas CAZ resistance was associated with changes in membrane protein pathways. These findings highlighted how Bp develops resistance to key antibiotics through various mechanisms. In addition, we discovered 21 novel genetic variants in known drug-resistance genes, including 15 SNPs and six short insertions or deletions (indels). These previously unreported variants could contribute to resistance, highlighting the genetic diversity and adaptability to antimicrobial pressures of Bp. These findings deepen our understanding of Bp drug resistance and offer valuable insights into genetic markers with the potential to enhance diagnostic precision. By enriching the resistance database, this work provides prospective tools for early resistance prediction, facilitating prompt and effective treatment strategies. Furthermore, it emphasizes the critical role of genetic investigations in addressing the challenge of antibiotic resistance in melioidosis.</div></div>","PeriodicalId":54986,"journal":{"name":"Infection Genetics and Evolution","volume":"133 ","pages":"Article 105779"},"PeriodicalIF":2.6000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infection Genetics and Evolution","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567134825000681","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0
Abstract
Melioidosis, caused by the gram-negative bacterium Burkholderia pseudomallei (Bp), poses a significant health threat due to its potential for drug resistance, which can severely limit available treatment options. To investigate this, we conducted a comparative genomic analysis of 38 drug-resistant (DR) and 300 drug-susceptible (DS) Bp isolates to identify genetic markers associated with antimicrobial resistance. Our study identified seven significant single-nucleotide polymorphisms (SNPs) linked to drug resistance: two with ceftazidime (CAZ), and five with meropenem (MEM). Pathway analysis revealed that AMC resistance was associated with alterations in fatty-acid metabolism, whereas CAZ resistance was associated with changes in membrane protein pathways. These findings highlighted how Bp develops resistance to key antibiotics through various mechanisms. In addition, we discovered 21 novel genetic variants in known drug-resistance genes, including 15 SNPs and six short insertions or deletions (indels). These previously unreported variants could contribute to resistance, highlighting the genetic diversity and adaptability to antimicrobial pressures of Bp. These findings deepen our understanding of Bp drug resistance and offer valuable insights into genetic markers with the potential to enhance diagnostic precision. By enriching the resistance database, this work provides prospective tools for early resistance prediction, facilitating prompt and effective treatment strategies. Furthermore, it emphasizes the critical role of genetic investigations in addressing the challenge of antibiotic resistance in melioidosis.
期刊介绍:
(aka Journal of Molecular Epidemiology and Evolutionary Genetics of Infectious Diseases -- MEEGID)
Infectious diseases constitute one of the main challenges to medical science in the coming century. The impressive development of molecular megatechnologies and of bioinformatics have greatly increased our knowledge of the evolution, transmission and pathogenicity of infectious diseases. Research has shown that host susceptibility to many infectious diseases has a genetic basis. Furthermore, much is now known on the molecular epidemiology, evolution and virulence of pathogenic agents, as well as their resistance to drugs, vaccines, and antibiotics. Equally, research on the genetics of disease vectors has greatly improved our understanding of their systematics, has increased our capacity to identify target populations for control or intervention, and has provided detailed information on the mechanisms of insecticide resistance.
However, the genetics and evolutionary biology of hosts, pathogens and vectors have tended to develop as three separate fields of research. This artificial compartmentalisation is of concern due to our growing appreciation of the strong co-evolutionary interactions among hosts, pathogens and vectors.
Infection, Genetics and Evolution and its companion congress [MEEGID](http://www.meegidconference.com/) (for Molecular Epidemiology and Evolutionary Genetics of Infectious Diseases) are the main forum acting for the cross-fertilization between evolutionary science and biomedical research on infectious diseases.
Infection, Genetics and Evolution is the only journal that welcomes articles dealing with the genetics and evolutionary biology of hosts, pathogens and vectors, and coevolution processes among them in relation to infection and disease manifestation. All infectious models enter the scope of the journal, including pathogens of humans, animals and plants, either parasites, fungi, bacteria, viruses or prions. The journal welcomes articles dealing with genetics, population genetics, genomics, postgenomics, gene expression, evolutionary biology, population dynamics, mathematical modeling and bioinformatics. We also provide many author benefits, such as free PDFs, a liberal copyright policy, special discounts on Elsevier publications and much more. Please click here for more information on our author services .