Genome wide analysis of Priestia aryabhattai_OP, an endobacterium, modulating growth, development and biochemical compositions of sporophores in edible oyster mushroom Pleurotus ostreatus (MTCC 1802).
IF 4.2 3区 生物学Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Chandana Paul, Tina Roy, Madhurima Roy, Athira C Rajeev, Archana Pan, Madhumita Maitra, Nirmalendu Das
{"title":"Genome wide analysis of Priestia aryabhattai_OP, an endobacterium, modulating growth, development and biochemical compositions of sporophores in edible oyster mushroom Pleurotus ostreatus (MTCC 1802).","authors":"Chandana Paul, Tina Roy, Madhurima Roy, Athira C Rajeev, Archana Pan, Madhumita Maitra, Nirmalendu Das","doi":"10.1007/s11274-025-04438-z","DOIUrl":null,"url":null,"abstract":"<p><p>The increasing global interest in the consuming and producing of edible oyster mushrooms (Pleurotus spp.) is driven by their well-documented nutritional and health benefits. The metagenomic analysis of fruiting body revealed a distinct microbial composition in P. ostreatus, predominantly comprising Pseudomonodota (~ 82%) and Bacillota (~ 10%). An endobacterium Priestia aryabhattai_OP, associated with internal tissue of P. ostreatus (MTCC 1802), was isolated and characterized through biochemical and microscopic analyses as well as 16 S rRNA and whole genome sequencing. Co-cultivation of P. ostreatus with this bacterium significantly enhanced the in vitro production of laccase, a key growth-promoting enzyme. Additionally, the endobacterium improved the biological efficiency (BE) of the mushroom, enriched its nutraceutical profile, and facilitated the biosynthesis of beneficial compounds, including IAA, siderophores, and antimicrobials like lassopeptides, phosphonates, non-ribosomal iron-binding siderophores (NI- siderophore), carotenoids, paeninodins, synechobactins, and surfactins. The present findings offer novel insights into microbe-microbe interactions and their pivotal roles in fungal biology, with significant implications for sustainable mushroom production as well as nutrient enrichment and biotechnological advancements.</p>","PeriodicalId":23703,"journal":{"name":"World journal of microbiology & biotechnology","volume":"41 6","pages":"194"},"PeriodicalIF":4.2000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World journal of microbiology & biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11274-025-04438-z","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The increasing global interest in the consuming and producing of edible oyster mushrooms (Pleurotus spp.) is driven by their well-documented nutritional and health benefits. The metagenomic analysis of fruiting body revealed a distinct microbial composition in P. ostreatus, predominantly comprising Pseudomonodota (~ 82%) and Bacillota (~ 10%). An endobacterium Priestia aryabhattai_OP, associated with internal tissue of P. ostreatus (MTCC 1802), was isolated and characterized through biochemical and microscopic analyses as well as 16 S rRNA and whole genome sequencing. Co-cultivation of P. ostreatus with this bacterium significantly enhanced the in vitro production of laccase, a key growth-promoting enzyme. Additionally, the endobacterium improved the biological efficiency (BE) of the mushroom, enriched its nutraceutical profile, and facilitated the biosynthesis of beneficial compounds, including IAA, siderophores, and antimicrobials like lassopeptides, phosphonates, non-ribosomal iron-binding siderophores (NI- siderophore), carotenoids, paeninodins, synechobactins, and surfactins. The present findings offer novel insights into microbe-microbe interactions and their pivotal roles in fungal biology, with significant implications for sustainable mushroom production as well as nutrient enrichment and biotechnological advancements.
期刊介绍:
World Journal of Microbiology and Biotechnology publishes research papers and review articles on all aspects of Microbiology and Microbial Biotechnology.
Since its foundation, the Journal has provided a forum for research work directed toward finding microbiological and biotechnological solutions to global problems. As many of these problems, including crop productivity, public health and waste management, have major impacts in the developing world, the Journal especially reports on advances for and from developing regions.
Some topics are not within the scope of the Journal. Please do not submit your manuscript if it falls into one of the following categories:
· Virology
· Simple isolation of microbes from local sources
· Simple descriptions of an environment or reports on a procedure
· Veterinary, agricultural and clinical topics in which the main focus is not on a microorganism
· Data reporting on host response to microbes
· Optimization of a procedure
· Description of the biological effects of not fully identified compounds or undefined extracts of natural origin
· Data on not fully purified enzymes or procedures in which they are applied
All articles published in the Journal are independently refereed.