{"title":"Research status and progress of deep learning in automatic esophageal cancer detection.","authors":"Jing Chen, Xin Fan, Qiao-Liang Chen, Wei Ren, Qi Li, Dong Wang, Jian He","doi":"10.4251/wjgo.v17.i5.104410","DOIUrl":null,"url":null,"abstract":"<p><p>Esophageal cancer (EC), a common malignant tumor of the digestive tract, requires early diagnosis and timely treatment to improve patient prognosis. Automated detection of EC using medical imaging has the potential to increase screening efficiency and diagnostic accuracy, thereby significantly improving long-term survival rates and the quality of life of patients. Recent advances in deep learning (DL), particularly convolutional neural networks, have demonstrated remarkable performance in medical imaging analysis. These techniques have shown significant progress in the automated identification of malignant tumors, quantitative analysis of lesions, and improvement in diagnostic accuracy and efficiency. This article comprehensively examines the research progress of DL in medical imaging for EC, covering various imaging modalities such as digital pathology, endoscopy, computed tomography, <i>etc.</i> It explores the clinical value and application prospects of DL in EC screening and diagnosis. Additionally, the article addresses several critical challenges that must be overcome for the clinical translation of DL techniques, including constructing high-quality datasets, promoting multimodal feature fusion, and optimizing artificial intelligence-clinical workflow integration. By providing a detailed overview of the current state of DL in EC imaging and highlighting the key challenges and future directions, this article aims to guide future research and facilitate the clinical implementation of DL technologies in EC management, ultimately contributing to better patient outcomes.</p>","PeriodicalId":23762,"journal":{"name":"World Journal of Gastrointestinal Oncology","volume":"17 5","pages":"104410"},"PeriodicalIF":2.5000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12142226/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Journal of Gastrointestinal Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4251/wjgo.v17.i5.104410","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Esophageal cancer (EC), a common malignant tumor of the digestive tract, requires early diagnosis and timely treatment to improve patient prognosis. Automated detection of EC using medical imaging has the potential to increase screening efficiency and diagnostic accuracy, thereby significantly improving long-term survival rates and the quality of life of patients. Recent advances in deep learning (DL), particularly convolutional neural networks, have demonstrated remarkable performance in medical imaging analysis. These techniques have shown significant progress in the automated identification of malignant tumors, quantitative analysis of lesions, and improvement in diagnostic accuracy and efficiency. This article comprehensively examines the research progress of DL in medical imaging for EC, covering various imaging modalities such as digital pathology, endoscopy, computed tomography, etc. It explores the clinical value and application prospects of DL in EC screening and diagnosis. Additionally, the article addresses several critical challenges that must be overcome for the clinical translation of DL techniques, including constructing high-quality datasets, promoting multimodal feature fusion, and optimizing artificial intelligence-clinical workflow integration. By providing a detailed overview of the current state of DL in EC imaging and highlighting the key challenges and future directions, this article aims to guide future research and facilitate the clinical implementation of DL technologies in EC management, ultimately contributing to better patient outcomes.
期刊介绍:
The World Journal of Gastrointestinal Oncology (WJGO) is a leading academic journal devoted to reporting the latest, cutting-edge research progress and findings of basic research and clinical practice in the field of gastrointestinal oncology.