{"title":"Flexible regression methods for estimating optimal individualized treatment regimes with scalar and functional covariates.","authors":"Kaidi Kong, Li Guan, Zhongzhan Zhang","doi":"10.1177/09622802251340259","DOIUrl":null,"url":null,"abstract":"<p><p>In personalized medicine study, how to estimate the optimal individualized treatment regime based on available individual information is a fundamental problem. In recent years, functional data analysis has appeared extensively in medical research, while the optimal individualized treatment regime based on the combination of scalar covariates and functional covariates have rarely been studied and the only few studies are mostly conducted in the context of randomized trials. In this article, we propose a flexible regression-based approach in which the outcome variable is real-valued and the covariates contain multiple scalar covariates and a functional covariate. Our approach is applicable to both randomized trials and observational studies, and the convergence rates of the proposed optimal individualized treatment regime estimators are presented for both situations. Sufficient simulation studies and a real data analysis are conducted to justified the validity of our proposed method.</p>","PeriodicalId":22038,"journal":{"name":"Statistical Methods in Medical Research","volume":" ","pages":"1459-1479"},"PeriodicalIF":1.9000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Methods in Medical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/09622802251340259","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/9 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0
Abstract
In personalized medicine study, how to estimate the optimal individualized treatment regime based on available individual information is a fundamental problem. In recent years, functional data analysis has appeared extensively in medical research, while the optimal individualized treatment regime based on the combination of scalar covariates and functional covariates have rarely been studied and the only few studies are mostly conducted in the context of randomized trials. In this article, we propose a flexible regression-based approach in which the outcome variable is real-valued and the covariates contain multiple scalar covariates and a functional covariate. Our approach is applicable to both randomized trials and observational studies, and the convergence rates of the proposed optimal individualized treatment regime estimators are presented for both situations. Sufficient simulation studies and a real data analysis are conducted to justified the validity of our proposed method.
期刊介绍:
Statistical Methods in Medical Research is a peer reviewed scholarly journal and is the leading vehicle for articles in all the main areas of medical statistics and an essential reference for all medical statisticians. This unique journal is devoted solely to statistics and medicine and aims to keep professionals abreast of the many powerful statistical techniques now available to the medical profession. This journal is a member of the Committee on Publication Ethics (COPE)