{"title":"Oligogalacturonides Operate as Endogenous Elicitors to Regulate Aluminum Tolerance in Pea (Pisum sativum).","authors":"Xuewen Li, Xiaobei Cao, Zidu Liu, Shuting Liu, Xiaopei Ma, Wangchuan Zhang, Lin Tao, Jiayou Liu, Yingming Feng, Sergey Shabala, Yalin Li, Min Yu","doi":"10.1111/ppl.70326","DOIUrl":null,"url":null,"abstract":"<p><p>Aluminum (Al) toxicity is a major limiting factor leading to crop yield reduction in acidic soils. The pectic polysaccharides, key components of plant cell walls, are considered the primary binding site for Al ions. Oligogalacturonide (OGA), the oligomers of alpha-1,4-linked galacturonosyl residues originating from the degradation of cell wall pectin (homogalacturonan), are able to elicit defense responses and protect plants against biotic stress, such as pathogen infections. However, the involvement of OGA in the plant's response to abiotic stress remains to be elucidated. In this work, we analysed the effects of Al treatment on the endogenous OGA content in pea root tips, as well as the effects of OGA pretreatment on pea root elongation, Al content, and reactive oxygen species (ROS) metabolism, with a working hypothesis being that OGA is causally involved in plant responses to Al toxicity. Hydroponically grown pea (Pisum sativum) plants were used to explore the biological functions of OGA in response to Al toxicity. Our data showed that Al treatment significantly induced the accumulation of endogenous OGA in root tips, primarily in the form of short-chain OGA. Pretreatment with exogenous OGA for 12 h notably improved pea tolerance to Al toxicity, including mitigating Al-induced suppression of root elongation growth and attenuating Al toxicity effects on the root system. OGA also enhanced Al tolerance by regulating redox homeostasis in root tips, reducing Al toxicity-induced accumulation of ROS and by transcriptional upregulation of antioxidant enzyme activities. Overall, this research is the first to demonstrate the role of OGA in plant responses to Al toxicity, offering novel theoretical foundations for understanding plant adaptation to acidic soil conditions.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 3","pages":"e70326"},"PeriodicalIF":5.4000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiologia plantarum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/ppl.70326","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Aluminum (Al) toxicity is a major limiting factor leading to crop yield reduction in acidic soils. The pectic polysaccharides, key components of plant cell walls, are considered the primary binding site for Al ions. Oligogalacturonide (OGA), the oligomers of alpha-1,4-linked galacturonosyl residues originating from the degradation of cell wall pectin (homogalacturonan), are able to elicit defense responses and protect plants against biotic stress, such as pathogen infections. However, the involvement of OGA in the plant's response to abiotic stress remains to be elucidated. In this work, we analysed the effects of Al treatment on the endogenous OGA content in pea root tips, as well as the effects of OGA pretreatment on pea root elongation, Al content, and reactive oxygen species (ROS) metabolism, with a working hypothesis being that OGA is causally involved in plant responses to Al toxicity. Hydroponically grown pea (Pisum sativum) plants were used to explore the biological functions of OGA in response to Al toxicity. Our data showed that Al treatment significantly induced the accumulation of endogenous OGA in root tips, primarily in the form of short-chain OGA. Pretreatment with exogenous OGA for 12 h notably improved pea tolerance to Al toxicity, including mitigating Al-induced suppression of root elongation growth and attenuating Al toxicity effects on the root system. OGA also enhanced Al tolerance by regulating redox homeostasis in root tips, reducing Al toxicity-induced accumulation of ROS and by transcriptional upregulation of antioxidant enzyme activities. Overall, this research is the first to demonstrate the role of OGA in plant responses to Al toxicity, offering novel theoretical foundations for understanding plant adaptation to acidic soil conditions.
期刊介绍:
Physiologia Plantarum is an international journal committed to publishing the best full-length original research papers that advance our understanding of primary mechanisms of plant development, growth and productivity as well as plant interactions with the biotic and abiotic environment. All organisational levels of experimental plant biology – from molecular and cell biology, biochemistry and biophysics to ecophysiology and global change biology – fall within the scope of the journal. The content is distributed between 5 main subject areas supervised by Subject Editors specialised in the respective domain: (1) biochemistry and metabolism, (2) ecophysiology, stress and adaptation, (3) uptake, transport and assimilation, (4) development, growth and differentiation, (5) photobiology and photosynthesis.