Yash Sansare, Priyatharcini Kejamurthy, Suramya Singh, Aryan Ayush, Koustubhi Khani, K T Ramya Devi
{"title":"Aptamers as therapeutic targets: prospects and progress in the treatment of cancers.","authors":"Yash Sansare, Priyatharcini Kejamurthy, Suramya Singh, Aryan Ayush, Koustubhi Khani, K T Ramya Devi","doi":"10.1080/15257770.2025.2512853","DOIUrl":null,"url":null,"abstract":"<p><p>Contemporary cancer treatments encompass diverse strategies like surgery, chemotherapy, radiation, immunotherapy, and targeted therapies, aiming for effective cancer cell control with minimal impact on healthy tissues. Aptamers are short nucleotide sequences typically containing 25-80 bases and can attach to specific target molecules as effectively as monoclonal antibodies. While the FDA has yet to approve any aptamers for oncology applications, a few, such as Pegaptanib (Macugen), have been approved for ophthalmologic conditions like age-related macular degeneration. Pegaptanib and Izervay are the approved aptamers against age-related macular degeneration (AMD) that target vascular endothelial growth factor (VEGF) and block complement component protein C5, respectively. A new type of highly sensitive and specific biosensor has recently been created to detect leukaemia cancer cells. Aptamosomes, encapsulating drugs like doxorubicin, effectively reduce tumour size and are highly advantageous over targeted drug delivery. Many aptamers have been generated against ERα, Epithelial cell adhesion molecule, EGFR, B subunit of platelet-derived growth factor, Vimentin, Osteopontin, Type II membrane protein PSMA, MUC-1, AXL receptor tyrosine kinase, CD28 agonistic aptamer, as well as for the B7-CD28 interaction, etc. This review suggests the pros and cons of aptamer usage and its advantages over antibody treatment. It also outlines the roles of aptamers and connects their modes of action with specific cancer types. The content is highly detailed, providing a comprehensive understanding of aptamer therapy and its applications.</p>","PeriodicalId":19343,"journal":{"name":"Nucleosides, Nucleotides & Nucleic Acids","volume":" ","pages":"1-39"},"PeriodicalIF":1.1000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleosides, Nucleotides & Nucleic Acids","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15257770.2025.2512853","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Contemporary cancer treatments encompass diverse strategies like surgery, chemotherapy, radiation, immunotherapy, and targeted therapies, aiming for effective cancer cell control with minimal impact on healthy tissues. Aptamers are short nucleotide sequences typically containing 25-80 bases and can attach to specific target molecules as effectively as monoclonal antibodies. While the FDA has yet to approve any aptamers for oncology applications, a few, such as Pegaptanib (Macugen), have been approved for ophthalmologic conditions like age-related macular degeneration. Pegaptanib and Izervay are the approved aptamers against age-related macular degeneration (AMD) that target vascular endothelial growth factor (VEGF) and block complement component protein C5, respectively. A new type of highly sensitive and specific biosensor has recently been created to detect leukaemia cancer cells. Aptamosomes, encapsulating drugs like doxorubicin, effectively reduce tumour size and are highly advantageous over targeted drug delivery. Many aptamers have been generated against ERα, Epithelial cell adhesion molecule, EGFR, B subunit of platelet-derived growth factor, Vimentin, Osteopontin, Type II membrane protein PSMA, MUC-1, AXL receptor tyrosine kinase, CD28 agonistic aptamer, as well as for the B7-CD28 interaction, etc. This review suggests the pros and cons of aptamer usage and its advantages over antibody treatment. It also outlines the roles of aptamers and connects their modes of action with specific cancer types. The content is highly detailed, providing a comprehensive understanding of aptamer therapy and its applications.
期刊介绍:
Nucleosides, Nucleotides & Nucleic Acids publishes research articles, short notices, and concise, critical reviews of related topics that focus on the chemistry and biology of nucleosides, nucleotides, and nucleic acids.
Complete with experimental details, this all-inclusive journal emphasizes the synthesis, biological activities, new and improved synthetic methods, and significant observations related to new compounds.