Aptamers as therapeutic targets: prospects and progress in the treatment of cancers.

IF 1.1 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Yash Sansare, Priyatharcini Kejamurthy, Suramya Singh, Aryan Ayush, Koustubhi Khani, K T Ramya Devi
{"title":"Aptamers as therapeutic targets: prospects and progress in the treatment of cancers.","authors":"Yash Sansare, Priyatharcini Kejamurthy, Suramya Singh, Aryan Ayush, Koustubhi Khani, K T Ramya Devi","doi":"10.1080/15257770.2025.2512853","DOIUrl":null,"url":null,"abstract":"<p><p>Contemporary cancer treatments encompass diverse strategies like surgery, chemotherapy, radiation, immunotherapy, and targeted therapies, aiming for effective cancer cell control with minimal impact on healthy tissues. Aptamers are short nucleotide sequences typically containing 25-80 bases and can attach to specific target molecules as effectively as monoclonal antibodies. While the FDA has yet to approve any aptamers for oncology applications, a few, such as Pegaptanib (Macugen), have been approved for ophthalmologic conditions like age-related macular degeneration. Pegaptanib and Izervay are the approved aptamers against age-related macular degeneration (AMD) that target vascular endothelial growth factor (VEGF) and block complement component protein C5, respectively. A new type of highly sensitive and specific biosensor has recently been created to detect leukaemia cancer cells. Aptamosomes, encapsulating drugs like doxorubicin, effectively reduce tumour size and are highly advantageous over targeted drug delivery. Many aptamers have been generated against ERα, Epithelial cell adhesion molecule, EGFR, B subunit of platelet-derived growth factor, Vimentin, Osteopontin, Type II membrane protein PSMA, MUC-1, AXL receptor tyrosine kinase, CD28 agonistic aptamer, as well as for the B7-CD28 interaction, etc. This review suggests the pros and cons of aptamer usage and its advantages over antibody treatment. It also outlines the roles of aptamers and connects their modes of action with specific cancer types. The content is highly detailed, providing a comprehensive understanding of aptamer therapy and its applications.</p>","PeriodicalId":19343,"journal":{"name":"Nucleosides, Nucleotides & Nucleic Acids","volume":" ","pages":"1-39"},"PeriodicalIF":1.1000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleosides, Nucleotides & Nucleic Acids","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15257770.2025.2512853","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Contemporary cancer treatments encompass diverse strategies like surgery, chemotherapy, radiation, immunotherapy, and targeted therapies, aiming for effective cancer cell control with minimal impact on healthy tissues. Aptamers are short nucleotide sequences typically containing 25-80 bases and can attach to specific target molecules as effectively as monoclonal antibodies. While the FDA has yet to approve any aptamers for oncology applications, a few, such as Pegaptanib (Macugen), have been approved for ophthalmologic conditions like age-related macular degeneration. Pegaptanib and Izervay are the approved aptamers against age-related macular degeneration (AMD) that target vascular endothelial growth factor (VEGF) and block complement component protein C5, respectively. A new type of highly sensitive and specific biosensor has recently been created to detect leukaemia cancer cells. Aptamosomes, encapsulating drugs like doxorubicin, effectively reduce tumour size and are highly advantageous over targeted drug delivery. Many aptamers have been generated against ERα, Epithelial cell adhesion molecule, EGFR, B subunit of platelet-derived growth factor, Vimentin, Osteopontin, Type II membrane protein PSMA, MUC-1, AXL receptor tyrosine kinase, CD28 agonistic aptamer, as well as for the B7-CD28 interaction, etc. This review suggests the pros and cons of aptamer usage and its advantages over antibody treatment. It also outlines the roles of aptamers and connects their modes of action with specific cancer types. The content is highly detailed, providing a comprehensive understanding of aptamer therapy and its applications.

适体作为治疗靶点:癌症治疗的前景与进展。
当代癌症治疗包括手术、化疗、放射、免疫治疗和靶向治疗等多种策略,旨在有效控制癌细胞,同时对健康组织的影响最小。适配体是短核苷酸序列,通常包含25-80个碱基,可以像单克隆抗体一样有效地附着在特定的靶分子上。虽然FDA尚未批准任何用于肿瘤学应用的适配体,但一些适配体,如Pegaptanib (Macugen),已被批准用于眼科疾病,如年龄相关性黄斑变性。Pegaptanib和Izervay是抗年龄相关性黄斑变性(AMD)的适配体,分别靶向血管内皮生长因子(VEGF)和阻断补体成分蛋白C5。最近,一种新型的高灵敏度和特异性生物传感器被发明出来,用于检测白血病癌细胞。aptamosomal,包裹药物如阿霉素,有效地缩小肿瘤大小,并且比靶向药物递送更有优势。许多适配体已被合成,包括ERα、上皮细胞粘附分子、EGFR、血小板源性生长因子B亚基、Vimentin、骨桥蛋白、II型膜蛋白PSMA、MUC-1、AXL受体酪氨酸激酶、CD28受体适配体以及B7-CD28相互作用适配体等。本文综述了适体使用的利弊及其相对于抗体治疗的优势。它还概述了适体的作用,并将它们的作用模式与特定的癌症类型联系起来。内容非常详细,提供了适体疗法及其应用的全面了解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nucleosides, Nucleotides & Nucleic Acids
Nucleosides, Nucleotides & Nucleic Acids 生物-生化与分子生物学
CiteScore
2.60
自引率
7.70%
发文量
91
审稿时长
6 months
期刊介绍: Nucleosides, Nucleotides & Nucleic Acids publishes research articles, short notices, and concise, critical reviews of related topics that focus on the chemistry and biology of nucleosides, nucleotides, and nucleic acids. Complete with experimental details, this all-inclusive journal emphasizes the synthesis, biological activities, new and improved synthetic methods, and significant observations related to new compounds.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信