crossNN is an explainable framework for cross-platform DNA methylation-based classification of tumors.

IF 23.5 1区 医学 Q1 ONCOLOGY
Dongsheng Yuan, Robin Jugas, Petra Pokorna, Jaroslav Sterba, Ondrej Slaby, Simone Schmid, Christin Siewert, Brendan Osberg, David Capper, Skarphedinn Halldorsson, Einar O Vik-Mo, Pia S Zeiner, Katharina J Weber, Patrick N Harter, Christian Thomas, Anne Albers, Markus Rechsteiner, Regina Reimann, Anton Appelt, Ulrich Schüller, Nabil Jabareen, Sebastian Mackowiak, Naveed Ishaque, Roland Eils, Sören Lukassen, Philipp Euskirchen
{"title":"crossNN is an explainable framework for cross-platform DNA methylation-based classification of tumors.","authors":"Dongsheng Yuan, Robin Jugas, Petra Pokorna, Jaroslav Sterba, Ondrej Slaby, Simone Schmid, Christin Siewert, Brendan Osberg, David Capper, Skarphedinn Halldorsson, Einar O Vik-Mo, Pia S Zeiner, Katharina J Weber, Patrick N Harter, Christian Thomas, Anne Albers, Markus Rechsteiner, Regina Reimann, Anton Appelt, Ulrich Schüller, Nabil Jabareen, Sebastian Mackowiak, Naveed Ishaque, Roland Eils, Sören Lukassen, Philipp Euskirchen","doi":"10.1038/s43018-025-00976-5","DOIUrl":null,"url":null,"abstract":"<p><p>DNA methylation-based classification of (brain) tumors has emerged as a powerful and indispensable diagnostic technique. Initial implementations used methylation microarrays for data generation, while most current classifiers rely on a fixed methylation feature space. This makes them incompatible with other platforms, especially different flavors of DNA sequencing. Here, we describe crossNN, a neural network-based machine learning framework that can accurately classify tumors using sparse methylomes obtained on different platforms and with different epigenome coverage and sequencing depth. It outperforms other deep and conventional machine learning models regarding accuracy and computational requirements while still being explainable. We use crossNN to train a pan-cancer classifier that can discriminate more than 170 tumor types across all organ sites. Validation in more than 5,000 tumors profiled on different platforms, including nanopore and targeted bisulfite sequencing, demonstrates its robustness and scalability with 99.1% and 97.8% precision for the brain tumor and pan-cancer models, respectively.</p>","PeriodicalId":18885,"journal":{"name":"Nature cancer","volume":" ","pages":""},"PeriodicalIF":23.5000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s43018-025-00976-5","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

DNA methylation-based classification of (brain) tumors has emerged as a powerful and indispensable diagnostic technique. Initial implementations used methylation microarrays for data generation, while most current classifiers rely on a fixed methylation feature space. This makes them incompatible with other platforms, especially different flavors of DNA sequencing. Here, we describe crossNN, a neural network-based machine learning framework that can accurately classify tumors using sparse methylomes obtained on different platforms and with different epigenome coverage and sequencing depth. It outperforms other deep and conventional machine learning models regarding accuracy and computational requirements while still being explainable. We use crossNN to train a pan-cancer classifier that can discriminate more than 170 tumor types across all organ sites. Validation in more than 5,000 tumors profiled on different platforms, including nanopore and targeted bisulfite sequencing, demonstrates its robustness and scalability with 99.1% and 97.8% precision for the brain tumor and pan-cancer models, respectively.

crossNN是跨平台的基于DNA甲基化的肿瘤分类的可解释框架。
基于DNA甲基化的(脑)肿瘤分类已经成为一种强大而不可或缺的诊断技术。最初的实现使用甲基化微阵列进行数据生成,而目前大多数分类器依赖于固定的甲基化特征空间。这使得它们与其他平台不兼容,尤其是不同风格的DNA测序。在这里,我们描述了crosssnn,这是一个基于神经网络的机器学习框架,可以使用在不同平台上获得的不同表观基因组覆盖范围和测序深度的稀疏甲基组准确分类肿瘤。它在精度和计算要求方面优于其他深度和传统的机器学习模型,同时仍然是可解释的。我们使用交叉snn来训练一个泛癌症分类器,该分类器可以区分所有器官部位的170多种肿瘤类型。在不同平台(包括纳米孔测序和靶向亚硫酸氢盐测序)上对5000多个肿瘤进行了验证,结果表明其稳健性和可扩展性,脑肿瘤和泛癌模型的精确度分别为99.1%和97.8%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature cancer
Nature cancer Medicine-Oncology
CiteScore
31.10
自引率
1.80%
发文量
129
期刊介绍: Cancer is a devastating disease responsible for millions of deaths worldwide. However, many of these deaths could be prevented with improved prevention and treatment strategies. To achieve this, it is crucial to focus on accurate diagnosis, effective treatment methods, and understanding the socioeconomic factors that influence cancer rates. Nature Cancer aims to serve as a unique platform for sharing the latest advancements in cancer research across various scientific fields, encompassing life sciences, physical sciences, applied sciences, and social sciences. The journal is particularly interested in fundamental research that enhances our understanding of tumor development and progression, as well as research that translates this knowledge into clinical applications through innovative diagnostic and therapeutic approaches. Additionally, Nature Cancer welcomes clinical studies that inform cancer diagnosis, treatment, and prevention, along with contributions exploring the societal impact of cancer on a global scale. In addition to publishing original research, Nature Cancer will feature Comments, Reviews, News & Views, Features, and Correspondence that hold significant value for the diverse field of cancer research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信