Measurement of myocardial blood flow in atrial fibrillation using high-resolution, free-breathing in-line quantitative cardiovascular magnetic resonance.
Richard J Crawley, Karl-Philipp Kunze, Anmol Kaushal, Xenios Milidonis, Jack Highton, Blanca Domenech-Ximenos, Irum D Kotadia, Can Karamanli, Nathan C K Wong, Robbie Murphy, Ebraham Alskaf, Radhouene Neji, Mark O'Neill, Steven E Williams, Cian M Scannell, Sven Plein, Amedeo Chiribiri
{"title":"Measurement of myocardial blood flow in atrial fibrillation using high-resolution, free-breathing in-line quantitative cardiovascular magnetic resonance.","authors":"Richard J Crawley, Karl-Philipp Kunze, Anmol Kaushal, Xenios Milidonis, Jack Highton, Blanca Domenech-Ximenos, Irum D Kotadia, Can Karamanli, Nathan C K Wong, Robbie Murphy, Ebraham Alskaf, Radhouene Neji, Mark O'Neill, Steven E Williams, Cian M Scannell, Sven Plein, Amedeo Chiribiri","doi":"10.1016/j.jocmr.2025.101917","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Stress perfusion cardiovascular magnetic resonance (CMR) in the presence of atrial fibrillation (AF) has long been challenging due to electrocardiogram (ECG) mis-triggering. However, non-invasive ischemia imaging is important due to an increased risk of myocardial infarction in patients with AF, which has been attributed to underlying microvascular dysfunction. Myocardial blood flow (MBF) in patients with AF is poorly understood, and few studies have attempted to quantify this through non-invasive imaging.</p><p><strong>Methods: </strong>Patients were recruited for stress perfusion CMR using a research sequence at 3-Tesla. Image acquisition occurred during both vasodilator-induced hyperemia and at rest. Stress and rest MBF maps were automatically generated. Analysis of perfusion maps included assessment of myocardial perfusion reserve (MPR) and endocardial-to-epicardial MBF ratios.</p><p><strong>Results: </strong>Around 442 patients were analyzed; 63 of whom had a history of AF and were in AF during the scan. Both MBF during hyperemia (stress MBF) and MPR were reduced in patients with AF compared to those in sinus rhythm (median stress MBF 1.85 [1.52-2.24] vs. 2.35 [1.98-2.77] mL/min/g, p<0.001; median MPR 1.95 [1.62-2.19] vs. 2.37 [2.05-2.80], p<0.001). No significant difference was seen between the two groups at rest (p=0.451). When considering co-factors affecting MBF, multivariate linear regression analysis identified the presence of AF as a significant independent contributor to stress MBF and MPR values. Both endocardial and epicardial stress MBF and MPR were reduced in AF compared with sinus rhythm (both p<0.001) and endocardial/epicardial ratios were similar between the groups.</p><p><strong>Conclusion: </strong>Automated quantitative MBF assessment can be performed in patients with AF. At hyperemia, MBF is reduced in AF compared to sinus rhythm.</p>","PeriodicalId":15221,"journal":{"name":"Journal of Cardiovascular Magnetic Resonance","volume":" ","pages":"101917"},"PeriodicalIF":6.1000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12445395/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cardiovascular Magnetic Resonance","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jocmr.2025.101917","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Stress perfusion cardiovascular magnetic resonance (CMR) in the presence of atrial fibrillation (AF) has long been challenging due to electrocardiogram (ECG) mis-triggering. However, non-invasive ischemia imaging is important due to an increased risk of myocardial infarction in patients with AF, which has been attributed to underlying microvascular dysfunction. Myocardial blood flow (MBF) in patients with AF is poorly understood, and few studies have attempted to quantify this through non-invasive imaging.
Methods: Patients were recruited for stress perfusion CMR using a research sequence at 3-Tesla. Image acquisition occurred during both vasodilator-induced hyperemia and at rest. Stress and rest MBF maps were automatically generated. Analysis of perfusion maps included assessment of myocardial perfusion reserve (MPR) and endocardial-to-epicardial MBF ratios.
Results: Around 442 patients were analyzed; 63 of whom had a history of AF and were in AF during the scan. Both MBF during hyperemia (stress MBF) and MPR were reduced in patients with AF compared to those in sinus rhythm (median stress MBF 1.85 [1.52-2.24] vs. 2.35 [1.98-2.77] mL/min/g, p<0.001; median MPR 1.95 [1.62-2.19] vs. 2.37 [2.05-2.80], p<0.001). No significant difference was seen between the two groups at rest (p=0.451). When considering co-factors affecting MBF, multivariate linear regression analysis identified the presence of AF as a significant independent contributor to stress MBF and MPR values. Both endocardial and epicardial stress MBF and MPR were reduced in AF compared with sinus rhythm (both p<0.001) and endocardial/epicardial ratios were similar between the groups.
Conclusion: Automated quantitative MBF assessment can be performed in patients with AF. At hyperemia, MBF is reduced in AF compared to sinus rhythm.
期刊介绍:
Journal of Cardiovascular Magnetic Resonance (JCMR) publishes high-quality articles on all aspects of basic, translational and clinical research on the design, development, manufacture, and evaluation of cardiovascular magnetic resonance (CMR) methods applied to the cardiovascular system. Topical areas include, but are not limited to:
New applications of magnetic resonance to improve the diagnostic strategies, risk stratification, characterization and management of diseases affecting the cardiovascular system.
New methods to enhance or accelerate image acquisition and data analysis.
Results of multicenter, or larger single-center studies that provide insight into the utility of CMR.
Basic biological perceptions derived by CMR methods.