Modular and signal-responsive transcriptional regulation using CRISPRi-aided genetic switches in Escherichia coli.

IF 5.7 3区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Seong Keun Kim, Seung-Gyun Woo, Jun-Hong Park, Seung-Goo Lee, Dae-Hee Lee
{"title":"Modular and signal-responsive transcriptional regulation using CRISPRi-aided genetic switches in Escherichia coli.","authors":"Seong Keun Kim, Seung-Gyun Woo, Jun-Hong Park, Seung-Goo Lee, Dae-Hee Lee","doi":"10.1186/s13036-025-00526-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Precise and dynamic transcriptional regulation is a cornerstone of synthetic biology, enabling the construction of robust genetic circuits and programmable cellular systems. However, existing regulatory tools are often limited by issues such as leaky transcription and insufficient tunability, particularly in high-expression or complex genetic contexts. This study aimed to develop a CRISPRi-aided genetic switch platform that overcomes these limitations and expands the functionality of transcriptional regulation tools in synthetic biology.</p><p><strong>Results: </strong>We established a versatile CRISPRi-aided genetic switch platform by integrating transcription factor-based biosensors with the Type V-A FnCas12a CRISPR system. Exploiting the RNase activity of FndCas12a, this system processes CRISPR RNAs (crRNAs) directly from biosensor-responsive mRNA transcripts, enabling precise, signal-dependent transcriptional regulation. To mitigate basal transcription and enhance regulatory precision, transcriptional terminator filters were incorporated, reducing leaky expression and increasing the dynamic range of target gene regulation. The platform demonstrated exceptional adaptability across diverse applications, including ligand-inducible genetic switches for transcriptional control, signal amplification circuits for enhanced output, and metabolic genetic switches for pathway reprogramming. Notably, the metabolic genetic switch dynamically repressed the endogenous gapA gene while compensating with orthologous gapC expression, effectively redirecting metabolic flux to balance cell growth.</p><p><strong>Conclusions: </strong>The CRISPRi-aided genetic switch provides a powerful and flexible toolkit for synthetic biology, addressing the limitations of existing systems. By enabling precise and tunable transcriptional regulation, it offers robust solutions for a wide array of biotechnological applications, including pathway engineering and synthetic gene networks.</p>","PeriodicalId":15053,"journal":{"name":"Journal of Biological Engineering","volume":"19 1","pages":"56"},"PeriodicalIF":5.7000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12142916/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Engineering","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13036-025-00526-8","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Precise and dynamic transcriptional regulation is a cornerstone of synthetic biology, enabling the construction of robust genetic circuits and programmable cellular systems. However, existing regulatory tools are often limited by issues such as leaky transcription and insufficient tunability, particularly in high-expression or complex genetic contexts. This study aimed to develop a CRISPRi-aided genetic switch platform that overcomes these limitations and expands the functionality of transcriptional regulation tools in synthetic biology.

Results: We established a versatile CRISPRi-aided genetic switch platform by integrating transcription factor-based biosensors with the Type V-A FnCas12a CRISPR system. Exploiting the RNase activity of FndCas12a, this system processes CRISPR RNAs (crRNAs) directly from biosensor-responsive mRNA transcripts, enabling precise, signal-dependent transcriptional regulation. To mitigate basal transcription and enhance regulatory precision, transcriptional terminator filters were incorporated, reducing leaky expression and increasing the dynamic range of target gene regulation. The platform demonstrated exceptional adaptability across diverse applications, including ligand-inducible genetic switches for transcriptional control, signal amplification circuits for enhanced output, and metabolic genetic switches for pathway reprogramming. Notably, the metabolic genetic switch dynamically repressed the endogenous gapA gene while compensating with orthologous gapC expression, effectively redirecting metabolic flux to balance cell growth.

Conclusions: The CRISPRi-aided genetic switch provides a powerful and flexible toolkit for synthetic biology, addressing the limitations of existing systems. By enabling precise and tunable transcriptional regulation, it offers robust solutions for a wide array of biotechnological applications, including pathway engineering and synthetic gene networks.

在大肠杆菌中使用crispr辅助基因开关的模块化和信号响应性转录调控。
背景:精确和动态的转录调控是合成生物学的基石,能够构建强大的遗传电路和可编程的细胞系统。然而,现有的调控工具经常受到诸如转录泄漏和可调性不足等问题的限制,特别是在高表达或复杂的遗传环境中。本研究旨在开发一种crispr辅助的基因开关平台,克服这些限制,扩展合成生物学中转录调控工具的功能。结果:我们将基于转录因子的生物传感器与V-A型FnCas12a CRISPR系统集成,建立了一个多功能的CRISPR辅助基因开关平台。利用FndCas12a的RNase活性,该系统直接处理来自生物传感器响应性mRNA转录物的CRISPR rna (crrna),从而实现精确的信号依赖性转录调控。为了减轻基础转录和提高调控精度,转录终止子过滤器被加入,减少泄漏表达和增加靶基因调控的动态范围。该平台在多种应用中表现出卓越的适应性,包括用于转录控制的配体诱导遗传开关,用于增强输出的信号放大电路,以及用于途径重编程的代谢遗传开关。值得注意的是,代谢遗传开关动态抑制内源性gapA基因,同时补偿同源gapC的表达,有效地重定向代谢通量以平衡细胞生长。结论:crispr辅助基因开关为合成生物学提供了一个强大而灵活的工具包,解决了现有系统的局限性。通过实现精确和可调的转录调控,它为广泛的生物技术应用提供了强大的解决方案,包括途径工程和合成基因网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Biological Engineering
Journal of Biological Engineering BIOCHEMICAL RESEARCH METHODS-BIOTECHNOLOGY & APPLIED MICROBIOLOGY
CiteScore
7.10
自引率
1.80%
发文量
32
审稿时长
17 weeks
期刊介绍: Biological engineering is an emerging discipline that encompasses engineering theory and practice connected to and derived from the science of biology, just as mechanical engineering and electrical engineering are rooted in physics and chemical engineering in chemistry. Topical areas include, but are not limited to: Synthetic biology and cellular design Biomolecular, cellular and tissue engineering Bioproduction and metabolic engineering Biosensors Ecological and environmental engineering Biological engineering education and the biodesign process As the official journal of the Institute of Biological Engineering, Journal of Biological Engineering provides a home for the continuum from biological information science, molecules and cells, product formation, wastes and remediation, and educational advances in curriculum content and pedagogy at the undergraduate and graduate-levels. Manuscripts should explore commonalities with other fields of application by providing some discussion of the broader context of the work and how it connects to other areas within the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信