Three glutamic acid residues in the cytoplasmic N-terminal tail of long-form GlcAT-P define Golgi-to-ER trafficking.

IF 2.1 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Ayaka Okada, Risa Harui, Tomonari Ishida, Katsuaki Higashi, Motohiro Nonaka, Shogo Oka, Jyoji Morise
{"title":"Three glutamic acid residues in the cytoplasmic N-terminal tail of long-form GlcAT-P define Golgi-to-ER trafficking.","authors":"Ayaka Okada, Risa Harui, Tomonari Ishida, Katsuaki Higashi, Motohiro Nonaka, Shogo Oka, Jyoji Morise","doi":"10.1093/jb/mvaf030","DOIUrl":null,"url":null,"abstract":"<p><p>Glucuronyltransferase GlcAT-P is a rate-limiting enzyme involved in the biosynthesis of the Human Natural Killer-1 carbohydrate and is essential for acquiring higher brain functions. Alternative splicing produces two isoforms, short-form GlcAT-P (sGlcAT-P) and long-form GlcAT-P (lGlcAT-P), which share identical peptide sequences except for an additional 13 amino acids (AA) in the cytoplasmic N-terminal tail of lGlcAT-P. Although sGlcAT-P localizes to the Golgi apparatus (GA), where many glycosyltransferases reside, lGlcAT-P is distributed in both the GA and endoplasmic reticulum (ER). However, the mechanisms responsible for this distinct intracellular distribution remain poorly understood. In this study, we explored the role of the 13 AA in the cytoplasmic N-tail of lGlcAT-P in trafficking between the GA and the ER using the Retention Using Selective Hooks system. Our findings revealed that lGlcAT-P undergoes enhanced retrograde trafficking from the GA to the ER, whereas its anterograde trafficking from the ER to the GA remains largely unaffected. In addition, three glutamic acid residues within the 13 AA of lGlcAT-P were identified as crucial for promoting retrograde trafficking. These results suggest that the ER distribution of lGlcAT-P is primarily governed by Golgi-to-ER trafficking regulated by specific sequences in its cytoplasmic N-tail.</p>","PeriodicalId":15234,"journal":{"name":"Journal of biochemistry","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jb/mvaf030","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Glucuronyltransferase GlcAT-P is a rate-limiting enzyme involved in the biosynthesis of the Human Natural Killer-1 carbohydrate and is essential for acquiring higher brain functions. Alternative splicing produces two isoforms, short-form GlcAT-P (sGlcAT-P) and long-form GlcAT-P (lGlcAT-P), which share identical peptide sequences except for an additional 13 amino acids (AA) in the cytoplasmic N-terminal tail of lGlcAT-P. Although sGlcAT-P localizes to the Golgi apparatus (GA), where many glycosyltransferases reside, lGlcAT-P is distributed in both the GA and endoplasmic reticulum (ER). However, the mechanisms responsible for this distinct intracellular distribution remain poorly understood. In this study, we explored the role of the 13 AA in the cytoplasmic N-tail of lGlcAT-P in trafficking between the GA and the ER using the Retention Using Selective Hooks system. Our findings revealed that lGlcAT-P undergoes enhanced retrograde trafficking from the GA to the ER, whereas its anterograde trafficking from the ER to the GA remains largely unaffected. In addition, three glutamic acid residues within the 13 AA of lGlcAT-P were identified as crucial for promoting retrograde trafficking. These results suggest that the ER distribution of lGlcAT-P is primarily governed by Golgi-to-ER trafficking regulated by specific sequences in its cytoplasmic N-tail.

长形GlcAT-P的细胞质n端尾部的三个谷氨酸残基定义了高尔基到内质网的运输。
葡萄糖醛基转移酶GlcAT-P是一种限速酶,参与人类自然杀手-1碳水化合物的生物合成,对获得高级脑功能至关重要。选择性剪接产生两种异构体,短形式GlcAT-P (sGlcAT-P)和长形式GlcAT-P (lGlcAT-P),它们具有相同的肽序列,除了lGlcAT-P的细胞质n端尾部额外的13个氨基酸(AA)。虽然sGlcAT-P定位于许多糖基转移酶驻留的高尔基体(GA),但lGlcAT-P同时分布于GA和内质网(ER)。然而,这种独特的细胞内分布的机制仍然知之甚少。在这项研究中,我们利用保留选择性钩子系统探索了lGlcAT-P细胞质n尾中的13aa在GA和ER之间运输中的作用。我们的研究结果表明,lGlcAT-P从GA到ER的逆行转运增强,而从ER到GA的逆行转运基本不受影响。此外,lGlcAT-P的13个AA内的三个谷氨酸残基被确定为促进逆行运输的关键。这些结果表明,lGlcAT-P的内质网分布主要受其细胞质n尾特定序列调控的高尔基向内质网转运。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of biochemistry
Journal of biochemistry 生物-生化与分子生物学
CiteScore
4.80
自引率
3.70%
发文量
101
审稿时长
4-8 weeks
期刊介绍: The Journal of Biochemistry founded in 1922 publishes the results of original research in the fields of Biochemistry, Molecular Biology, Cell, and Biotechnology written in English in the form of Regular Papers or Rapid Communications. A Rapid Communication is not a preliminary note, but it is, though brief, a complete and final publication. The materials described in Rapid Communications should not be included in a later paper. The Journal also publishes short reviews (JB Review) and papers solicited by the Editorial Board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信