Multivariate analysis reveals physiological trade-offs and synergies under light and nutrient gradients in the herbaceous species Agastache rugosa.

IF 2.6 4区 生物学 Q2 PLANT SCIENCES
Khairul Azree Rosli, Azizah Misran, Latifah Saiful Yazan, Puteri Edaroyati Megat Wahab
{"title":"Multivariate analysis reveals physiological trade-offs and synergies under light and nutrient gradients in the herbaceous species <i>Agastache rugosa</i>.","authors":"Khairul Azree Rosli, Azizah Misran, Latifah Saiful Yazan, Puteri Edaroyati Megat Wahab","doi":"10.1071/FP24323","DOIUrl":null,"url":null,"abstract":"<p><p>Agastache rugosa is an herbaceous species that shows a high degree of phenotypic plasticity in response to light and nutrient gradients, but the coordination among its leaf structural, photosynthetic, and resource use traits remains unexplored in tropical environments. We investigated the functional traits and resource use efficiencies of A. rugosa under four nutrient levels nested within two light levels. Photosynthetic rates increased under high-light, while leaf temperatures remained stable (34-37°C) across treatments, suggesting effective thermoregulation. Unexpectedly, Rubisco content was 22.4% higher under low-light, intermediate nutrient levels, indicating a compensatory mechanism. Water use efficiency increased under high-light, whereas photosynthetic phosphorus and potassium use efficiencies were higher under low-light levels. Principal component analysis showed that light and nutrients explained 71.6% of trait variation, with distinctive clustering of resource use efficiencies. Hierarchical clustering identified three functional trait groups at 90% similarity levels, comprising photosynthetic, nutrient use, and water conservation mechanisms. The species showed tight coordination between CO2 supply and demand, with strong correlations between photosynthetic traits and resource use efficiencies. Our findings demonstrate that A. rugosa employs a suite of adaptive mechanisms to optimise resource acquisition and utilisation across heterogeneous environments, advancing our understanding of plant responses to multiple resource gradients.</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":"52 ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1071/FP24323","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Agastache rugosa is an herbaceous species that shows a high degree of phenotypic plasticity in response to light and nutrient gradients, but the coordination among its leaf structural, photosynthetic, and resource use traits remains unexplored in tropical environments. We investigated the functional traits and resource use efficiencies of A. rugosa under four nutrient levels nested within two light levels. Photosynthetic rates increased under high-light, while leaf temperatures remained stable (34-37°C) across treatments, suggesting effective thermoregulation. Unexpectedly, Rubisco content was 22.4% higher under low-light, intermediate nutrient levels, indicating a compensatory mechanism. Water use efficiency increased under high-light, whereas photosynthetic phosphorus and potassium use efficiencies were higher under low-light levels. Principal component analysis showed that light and nutrients explained 71.6% of trait variation, with distinctive clustering of resource use efficiencies. Hierarchical clustering identified three functional trait groups at 90% similarity levels, comprising photosynthetic, nutrient use, and water conservation mechanisms. The species showed tight coordination between CO2 supply and demand, with strong correlations between photosynthetic traits and resource use efficiencies. Our findings demonstrate that A. rugosa employs a suite of adaptive mechanisms to optimise resource acquisition and utilisation across heterogeneous environments, advancing our understanding of plant responses to multiple resource gradients.

多变量分析揭示了草本物种Agastache rugosa在光照和养分梯度下的生理权衡和协同作用。
摘要热带环境下的赤杨(Agastache rugosa)是一种表现出高度表型可塑性的草本植物,但其叶片结构、光合作用和资源利用等性状之间的协调机制尚不清楚。研究了2个光照水平下4个养分水平下黑穗槐的功能性状和资源利用效率。在强光下,光合速率增加,而叶片温度保持稳定(34-37℃),表明有效的温度调节。出乎意料的是,在弱光、中等营养水平下,Rubisco含量高出22.4%,表明存在补偿机制。高光照条件下水分利用效率提高,低光照条件下光合磷、钾利用效率提高。主成分分析表明,光照和养分对性状变异的贡献率为71.6%,资源利用效率聚类显著。分层聚类鉴定出三个相似度为90%的功能性状群,包括光合作用机制、养分利用机制和水分保持机制。光合特性与资源利用效率密切相关,CO2供需关系密切。我们的研究结果表明,在不同的环境中,鲁格沙采用了一套适应性机制来优化资源获取和利用,从而促进了我们对植物对多种资源梯度的响应的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Functional Plant Biology
Functional Plant Biology 生物-植物科学
CiteScore
5.50
自引率
3.30%
发文量
156
审稿时长
1 months
期刊介绍: Functional Plant Biology (formerly known as Australian Journal of Plant Physiology) publishes papers of a broad interest that advance our knowledge on mechanisms by which plants operate and interact with environment. Of specific interest are mechanisms and signal transduction pathways by which plants adapt to extreme environmental conditions such as high and low temperatures, drought, flooding, salinity, pathogens, and other major abiotic and biotic stress factors. FPB also encourages papers on emerging concepts and new tools in plant biology, and studies on the following functional areas encompassing work from the molecular through whole plant to community scale. FPB does not publish merely phenomenological observations or findings of merely applied significance. Functional Plant Biology is published with the endorsement of the Commonwealth Scientific and Industrial Research Organisation (CSIRO) and the Australian Academy of Science. Functional Plant Biology is published in affiliation with the Federation of European Societies of Plant Biology and in Australia, is associated with the Australian Society of Plant Scientists and the New Zealand Society of Plant Biologists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信