Yuyang Xiao, Jian Yang, Xupeng Zhang, Meng Yang, Yuexiang Qin, Pinfang Huang, Dan Liu
{"title":"Evaluation and mechanism of the antioxidant activity of lactic acid bacteria.","authors":"Yuyang Xiao, Jian Yang, Xupeng Zhang, Meng Yang, Yuexiang Qin, Pinfang Huang, Dan Liu","doi":"10.1007/s12223-025-01277-1","DOIUrl":null,"url":null,"abstract":"<p><p>Lactic acid bacteria (LABs) have emerged as a significant area of study within the field of probiotics due to their diverse health benefits and wide application. This review examines the various methods used to evaluate the antioxidant activity of LABs, including in vitro chemical evaluation methods, cell model evaluation methods, and in vivo evaluation methods. Comprehensive overview of the various assessment techniques employed to elucidate the multifaceted roles of LABs in enhancing the body's natural defenses against oxidative damage. Moreover, this review emphasizes several pivotal aspects of the antioxidant effects of LABs, including the activation of the antioxidant signal pathway, the induction of antioxidative enzymes, the formation of a ROS-binding system, the production of metabolites, the enhancement of intestinal barrier integrity, the activation of the oxidative damage repair system, and the assurance of mitochondrial function. These represent the key antioxidant effects of LABs. The synthesis of this information advances our understanding of the dynamic and diverse antioxidant effects of LABs, providing a foundation for further research into their therapeutic applications in combating oxidative stress-related disorders. Future research should employ multi-omics technologies, genetic engineering, studies on synergistic effects, and large-scale clinical trials to further elucidate the molecular mechanisms underlying the antioxidant effects of LABs. This will promote their application in functional foods, pharmaceuticals, and cosmetics, providing a scientific basis for the development of more efficient antioxidant products.</p>","PeriodicalId":12346,"journal":{"name":"Folia microbiologica","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Folia microbiologica","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12223-025-01277-1","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Lactic acid bacteria (LABs) have emerged as a significant area of study within the field of probiotics due to their diverse health benefits and wide application. This review examines the various methods used to evaluate the antioxidant activity of LABs, including in vitro chemical evaluation methods, cell model evaluation methods, and in vivo evaluation methods. Comprehensive overview of the various assessment techniques employed to elucidate the multifaceted roles of LABs in enhancing the body's natural defenses against oxidative damage. Moreover, this review emphasizes several pivotal aspects of the antioxidant effects of LABs, including the activation of the antioxidant signal pathway, the induction of antioxidative enzymes, the formation of a ROS-binding system, the production of metabolites, the enhancement of intestinal barrier integrity, the activation of the oxidative damage repair system, and the assurance of mitochondrial function. These represent the key antioxidant effects of LABs. The synthesis of this information advances our understanding of the dynamic and diverse antioxidant effects of LABs, providing a foundation for further research into their therapeutic applications in combating oxidative stress-related disorders. Future research should employ multi-omics technologies, genetic engineering, studies on synergistic effects, and large-scale clinical trials to further elucidate the molecular mechanisms underlying the antioxidant effects of LABs. This will promote their application in functional foods, pharmaceuticals, and cosmetics, providing a scientific basis for the development of more efficient antioxidant products.
期刊介绍:
Unlike journals which specialize ever more narrowly, Folia Microbiologica (FM) takes an open approach that spans general, soil, medical and industrial microbiology, plus some branches of immunology. This English-language journal publishes original papers, reviews and mini-reviews, short communications and book reviews. The coverage includes cutting-edge methods and promising new topics, as well as studies using established methods that exhibit promise in practical applications such as medicine, animal husbandry and more. The coverage of FM is expanding beyond Central and Eastern Europe, with a growing proportion of its contents contributed by international authors.