Egis Zeneli , Hugo Bohets , Frédéric Ngono Mebenga , René Holm , Christophe Tistaert , Martin Kuentz
{"title":"Guiding excipient selection for physically stable amorphous solid dispersions: A combined in-vitro in-silico approach","authors":"Egis Zeneli , Hugo Bohets , Frédéric Ngono Mebenga , René Holm , Christophe Tistaert , Martin Kuentz","doi":"10.1016/j.ejps.2025.107152","DOIUrl":null,"url":null,"abstract":"<div><div>Fast screening of amorphous solid dispersions (ASDs) is a need in the pharmaceutical industry. To support this, several emerging technologies have been developed ranging from in-silico prediction to miniaturized high-throughput experimentation. However, a notable challenge lies in the absence of comparative data. In the present work, a combination of a miniaturized screening of ASDs with calculation of activity coefficients using the conductor like screening model for real solvents (COSMO-RS) was proposed. First, the physical stability of ASDs comprising drugs of different glass forming ability (GFA) each with ten pharmaceutically relevant polymers was evaluated under accelerated stress conditions at two drug:polymer ratios. The miniaturized high-throughput screening method was based on the instability onset time that was monitored by polarized light microscopy (PLM). Furthermore, COSMO-RS was used to assess the interaction strength between the drugs and polymers by calculating activity coefficients, which was combined with estimations of the wet glass transition temperature (T<sub>g</sub>), to account for molecular mobility. The computational calculations showed an overall alignment of 87 % with the instability of the ASDs observed experimentally for comparable drug:polymer ratios and humidity conditions. This positive result supports the current understanding of stable ASD formulation where at given ambient conditions, a low molecular mobility as well as the strength of interaction between drug and polymer has a main impact on the physical stability of ASDs. The current results are further encouraging to implement such a combined in-vitro/high-throughput (HTS) and in-silico strategy in early industrial screening of ASDs.</div></div>","PeriodicalId":12018,"journal":{"name":"European Journal of Pharmaceutical Sciences","volume":"212 ","pages":"Article 107152"},"PeriodicalIF":4.7000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Pharmaceutical Sciences","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0928098725001514","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Fast screening of amorphous solid dispersions (ASDs) is a need in the pharmaceutical industry. To support this, several emerging technologies have been developed ranging from in-silico prediction to miniaturized high-throughput experimentation. However, a notable challenge lies in the absence of comparative data. In the present work, a combination of a miniaturized screening of ASDs with calculation of activity coefficients using the conductor like screening model for real solvents (COSMO-RS) was proposed. First, the physical stability of ASDs comprising drugs of different glass forming ability (GFA) each with ten pharmaceutically relevant polymers was evaluated under accelerated stress conditions at two drug:polymer ratios. The miniaturized high-throughput screening method was based on the instability onset time that was monitored by polarized light microscopy (PLM). Furthermore, COSMO-RS was used to assess the interaction strength between the drugs and polymers by calculating activity coefficients, which was combined with estimations of the wet glass transition temperature (Tg), to account for molecular mobility. The computational calculations showed an overall alignment of 87 % with the instability of the ASDs observed experimentally for comparable drug:polymer ratios and humidity conditions. This positive result supports the current understanding of stable ASD formulation where at given ambient conditions, a low molecular mobility as well as the strength of interaction between drug and polymer has a main impact on the physical stability of ASDs. The current results are further encouraging to implement such a combined in-vitro/high-throughput (HTS) and in-silico strategy in early industrial screening of ASDs.
期刊介绍:
The journal publishes research articles, review articles and scientific commentaries on all aspects of the pharmaceutical sciences with emphasis on conceptual novelty and scientific quality. The Editors welcome articles in this multidisciplinary field, with a focus on topics relevant for drug discovery and development.
More specifically, the Journal publishes reports on medicinal chemistry, pharmacology, drug absorption and metabolism, pharmacokinetics and pharmacodynamics, pharmaceutical and biomedical analysis, drug delivery (including gene delivery), drug targeting, pharmaceutical technology, pharmaceutical biotechnology and clinical drug evaluation. The journal will typically not give priority to manuscripts focusing primarily on organic synthesis, natural products, adaptation of analytical approaches, or discussions pertaining to drug policy making.
Scientific commentaries and review articles are generally by invitation only or by consent of the Editors. Proceedings of scientific meetings may be published as special issues or supplements to the Journal.