{"title":"The efficient fluorescence probe for haloacetic acids detection based on the Eu(III) complex constructed by dehydroabietic amine and phenanthroline.","authors":"Quliang Lu, Yiru Wu, Ziwen He, Xiang Xu, Yijun Zheng, Qinwen Jiang, Shibin Shang","doi":"10.1080/09593330.2025.2516054","DOIUrl":null,"url":null,"abstract":"<p><p>A dual-emission fluorescence probe for sensitive determination of haloacetic acids (HAAs) was fabricated based on the Eu(III) complex (DDM-Phen-Eu), while dehydroabietic amine (DDM) and 1,10-phenanthroline (Phen) served as the ligands. FTIR, UV-vis, WAXD, SEM, elemental analysis, ESI-MS, and XPS measurements were employed to disclose the coordination structure of DDM-Phen-Eu. Based on the study of the Huang-Rhys factors and the Judd-Ofelt parameters, the introduction of DDM would decrease the reorganization energy, stabilize the coordinate structure, and improve the fluorescence quantum yield of DDM-Phen-Eu up to 90.68%. Due to the hydrophobic property of DDM component, water has been excluded from the coordinate structure of DDM-Phen-Eu, which generated the fluorescence from both Phen and the Eu(III) ions of DDM-Phen-Eu in aqueous solution. The fluorescence intensities of DDM-Phen-Eu remained stable in acidic, neutral, and alkaline solutions, even with the addition of NaCl. Halogen bond between the halogen atoms of HAAs and the N atoms of Phen component, accompanied with the coordination bond between the carboxyl group of HAAs and the Eu(III) ions, induced the charge transfer from DDM-Phen-Eu to HAAs and suppressed the fluorescence of DDM-Phen-Eu. Fluorescence quenching endowed DDM-Phen-Eu with sensitivity in the detection of HAAs with the concentrations range of 0 ∼ 1.78 μM for chloroacetic acid (CA), 0 ∼ 0.875 μM for bromoacetic acid (BA), and 0 ∼ 0.758 μM for iodoacetic acid (IA), respectively. The limits of detections for CA, BA, and IA were 0.151, 0.087, and 0.077 μM, respectively.</p>","PeriodicalId":12009,"journal":{"name":"Environmental Technology","volume":" ","pages":"1-15"},"PeriodicalIF":2.2000,"publicationDate":"2025-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/09593330.2025.2516054","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
A dual-emission fluorescence probe for sensitive determination of haloacetic acids (HAAs) was fabricated based on the Eu(III) complex (DDM-Phen-Eu), while dehydroabietic amine (DDM) and 1,10-phenanthroline (Phen) served as the ligands. FTIR, UV-vis, WAXD, SEM, elemental analysis, ESI-MS, and XPS measurements were employed to disclose the coordination structure of DDM-Phen-Eu. Based on the study of the Huang-Rhys factors and the Judd-Ofelt parameters, the introduction of DDM would decrease the reorganization energy, stabilize the coordinate structure, and improve the fluorescence quantum yield of DDM-Phen-Eu up to 90.68%. Due to the hydrophobic property of DDM component, water has been excluded from the coordinate structure of DDM-Phen-Eu, which generated the fluorescence from both Phen and the Eu(III) ions of DDM-Phen-Eu in aqueous solution. The fluorescence intensities of DDM-Phen-Eu remained stable in acidic, neutral, and alkaline solutions, even with the addition of NaCl. Halogen bond between the halogen atoms of HAAs and the N atoms of Phen component, accompanied with the coordination bond between the carboxyl group of HAAs and the Eu(III) ions, induced the charge transfer from DDM-Phen-Eu to HAAs and suppressed the fluorescence of DDM-Phen-Eu. Fluorescence quenching endowed DDM-Phen-Eu with sensitivity in the detection of HAAs with the concentrations range of 0 ∼ 1.78 μM for chloroacetic acid (CA), 0 ∼ 0.875 μM for bromoacetic acid (BA), and 0 ∼ 0.758 μM for iodoacetic acid (IA), respectively. The limits of detections for CA, BA, and IA were 0.151, 0.087, and 0.077 μM, respectively.
期刊介绍:
Environmental Technology is a leading journal for the rapid publication of science and technology papers on a wide range of topics in applied environmental studies, from environmental engineering to environmental biotechnology, the circular economy, municipal and industrial wastewater management, drinking-water treatment, air- and water-pollution control, solid-waste management, industrial hygiene and associated technologies.
Environmental Technology is intended to provide rapid publication of new developments in environmental technology. The journal has an international readership with a broad scientific base. Contributions will be accepted from scientists and engineers in industry, government and universities. Accepted manuscripts are generally published within four months.
Please note that Environmental Technology does not publish any review papers unless for a specified special issue which is decided by the Editor. Please do submit your review papers to our sister journal Environmental Technology Reviews at http://www.tandfonline.com/toc/tetr20/current