Rongrong Wang, Qian Wang, Mingfei Liu, He Xiao, Guimin Zhang, Jingchun Yao, Ming Liu
{"title":"Jingfang Granules for Diabetic Wound Healing: Insights from Network Pharmacology and Experimental Validation.","authors":"Rongrong Wang, Qian Wang, Mingfei Liu, He Xiao, Guimin Zhang, Jingchun Yao, Ming Liu","doi":"10.2147/DDDT.S516298","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Diabetic wounds are one of the most common complications of diabetes mellitus. Jingfang Granules (JFG), a combination of 11 herbs, has been clinically used for treating colds and the flu and for preventing various skin diseases.</p><p><strong>Purpose: </strong>The present study was designed to evaluate the therapeutic effect of JFG on diabetic wounds and to elucidate the associated mechanisms.</p><p><strong>Methods: </strong>JFG serum was prepared using Sprague-Dawley rats and the phytochemicals of JFG in the serum were identified using UHPLC-ESI-QE-Orbitrap-MS. A cell viability assay and cellular angiogenesis methods were performed to evaluate wound healing in vitro. Diabetic wounds were developed using streptozotocin-induced diabetic rats to investigate the efficacy of JFG on diabetic wounds in vivo. Network pharmacology analysis, molecular docking, and Western blot were performed to elucidate the potential mechanisms of JFG in diabetic wound healing.</p><p><strong>Results: </strong>JFG serum attenuated H<sub>2</sub>O<sub>2</sub>-induced and high glucose-induced oxidative damage, significantly reduced lipopolysaccharide-induced upregulation of inflammatory cytokines, and promoted angiogenesis in vitro. In diabetic rats, JFG effectively promoted wound healing, reduced blood glucose and lipid levels, and alleviated oxidative stress and inflammation. A total of 56 phytochemicals were identified in the JFG serum. Six core targets (AKT1, EGFR, MAPK3, MAPK1, IL6, and TNF) and the PI3K-AKT and MAPK signaling pathways were identified by network pharmacology analysis, which were further validated by subsequent experimental methods.</p><p><strong>Conclusion: </strong>JFG could accelerate diabetic wound healing by alleviating oxidative damage, suppressing inflammation, promoting angiogenesis, and regulating metabolic abnormalities, with involvement of the PI3K-AKT and MAPK signaling pathways.</p>","PeriodicalId":11290,"journal":{"name":"Drug Design, Development and Therapy","volume":"19 ","pages":"4835-4860"},"PeriodicalIF":4.7000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12145789/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Design, Development and Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/DDDT.S516298","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Diabetic wounds are one of the most common complications of diabetes mellitus. Jingfang Granules (JFG), a combination of 11 herbs, has been clinically used for treating colds and the flu and for preventing various skin diseases.
Purpose: The present study was designed to evaluate the therapeutic effect of JFG on diabetic wounds and to elucidate the associated mechanisms.
Methods: JFG serum was prepared using Sprague-Dawley rats and the phytochemicals of JFG in the serum were identified using UHPLC-ESI-QE-Orbitrap-MS. A cell viability assay and cellular angiogenesis methods were performed to evaluate wound healing in vitro. Diabetic wounds were developed using streptozotocin-induced diabetic rats to investigate the efficacy of JFG on diabetic wounds in vivo. Network pharmacology analysis, molecular docking, and Western blot were performed to elucidate the potential mechanisms of JFG in diabetic wound healing.
Results: JFG serum attenuated H2O2-induced and high glucose-induced oxidative damage, significantly reduced lipopolysaccharide-induced upregulation of inflammatory cytokines, and promoted angiogenesis in vitro. In diabetic rats, JFG effectively promoted wound healing, reduced blood glucose and lipid levels, and alleviated oxidative stress and inflammation. A total of 56 phytochemicals were identified in the JFG serum. Six core targets (AKT1, EGFR, MAPK3, MAPK1, IL6, and TNF) and the PI3K-AKT and MAPK signaling pathways were identified by network pharmacology analysis, which were further validated by subsequent experimental methods.
Conclusion: JFG could accelerate diabetic wound healing by alleviating oxidative damage, suppressing inflammation, promoting angiogenesis, and regulating metabolic abnormalities, with involvement of the PI3K-AKT and MAPK signaling pathways.
期刊介绍:
Drug Design, Development and Therapy is an international, peer-reviewed, open access journal that spans the spectrum of drug design, discovery and development through to clinical applications.
The journal is characterized by the rapid reporting of high-quality original research, reviews, expert opinions, commentary and clinical studies in all therapeutic areas.
Specific topics covered by the journal include:
Drug target identification and validation
Phenotypic screening and target deconvolution
Biochemical analyses of drug targets and their pathways
New methods or relevant applications in molecular/drug design and computer-aided drug discovery*
Design, synthesis, and biological evaluation of novel biologically active compounds (including diagnostics or chemical probes)
Structural or molecular biological studies elucidating molecular recognition processes
Fragment-based drug discovery
Pharmaceutical/red biotechnology
Isolation, structural characterization, (bio)synthesis, bioengineering and pharmacological evaluation of natural products**
Distribution, pharmacokinetics and metabolic transformations of drugs or biologically active compounds in drug development
Drug delivery and formulation (design and characterization of dosage forms, release mechanisms and in vivo testing)
Preclinical development studies
Translational animal models
Mechanisms of action and signalling pathways
Toxicology
Gene therapy, cell therapy and immunotherapy
Personalized medicine and pharmacogenomics
Clinical drug evaluation
Patient safety and sustained use of medicines.