eIF5A maintains intestinal epithelial homeostasis by sustaining intestinal stem cells.

IF 4 Q2 CELL & TISSUE ENGINEERING
Leilei Li, Yanhui Xiao, Liansheng Liu, Qianying Zhang, Yong Zhang, Dahai Zhu, Ye-Guang Chen
{"title":"eIF5A maintains intestinal epithelial homeostasis by sustaining intestinal stem cells.","authors":"Leilei Li, Yanhui Xiao, Liansheng Liu, Qianying Zhang, Yong Zhang, Dahai Zhu, Ye-Guang Chen","doi":"10.1186/s13619-025-00243-z","DOIUrl":null,"url":null,"abstract":"<p><p>Intestinal homeostasis is sustained by self-renewal of intestinal stem cells (ISCs), which continuously divide and produce proliferative transit-amplifying (TA) and then progenitor cells. Eukaryotic translation initiation factor 5A (eIF5A), a conserved translation factor, involves in a variety of cellular processes, yet its role in intestinal homeostasis remains unclear. Here, we demonstrate that eIF5A is indispensable for maintaining intestinal epithelial homeostasis. Conditional knockout of Eif5a in the adult mouse intestinal epithelium leads to stem cell loss, suppressed cell proliferation, and increased apoptosis within the crypts, concurrent with shortened gut length, reduced mouse body weight and rapid animal mortality. Consistently, Eif5a deletion in intestinal organoids also exhibits resembling cellular phenotypes. Mass spectrometry analysis reveals a significant downregulation of mitochondrial proteins, particularly those involved in mitochondrial translation, upon eIF5A depletion. Analysis of a published single-cell RNA sequencing dataset shows that mitochondrial translation-related genes, including Dars2, are highly expressed in ISC, TA and progenitor cells. Furthermore, eIF5A-deficient organoids exhibit impaired mitochondrial function, characterized by reduced ATP levels and increased reactive oxygen species (ROS). These findings highlight a critical role for eIF5A in sustaining intestinal epithelial homeostasis by regulating mitochondrial translation, providing a new insight into the molecular mechanism underlying intestinal stem cell renewal and tissue maintenance.</p>","PeriodicalId":9811,"journal":{"name":"Cell Regeneration","volume":"14 1","pages":"23"},"PeriodicalIF":4.0000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12149079/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Regeneration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13619-025-00243-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Intestinal homeostasis is sustained by self-renewal of intestinal stem cells (ISCs), which continuously divide and produce proliferative transit-amplifying (TA) and then progenitor cells. Eukaryotic translation initiation factor 5A (eIF5A), a conserved translation factor, involves in a variety of cellular processes, yet its role in intestinal homeostasis remains unclear. Here, we demonstrate that eIF5A is indispensable for maintaining intestinal epithelial homeostasis. Conditional knockout of Eif5a in the adult mouse intestinal epithelium leads to stem cell loss, suppressed cell proliferation, and increased apoptosis within the crypts, concurrent with shortened gut length, reduced mouse body weight and rapid animal mortality. Consistently, Eif5a deletion in intestinal organoids also exhibits resembling cellular phenotypes. Mass spectrometry analysis reveals a significant downregulation of mitochondrial proteins, particularly those involved in mitochondrial translation, upon eIF5A depletion. Analysis of a published single-cell RNA sequencing dataset shows that mitochondrial translation-related genes, including Dars2, are highly expressed in ISC, TA and progenitor cells. Furthermore, eIF5A-deficient organoids exhibit impaired mitochondrial function, characterized by reduced ATP levels and increased reactive oxygen species (ROS). These findings highlight a critical role for eIF5A in sustaining intestinal epithelial homeostasis by regulating mitochondrial translation, providing a new insight into the molecular mechanism underlying intestinal stem cell renewal and tissue maintenance.

eIF5A通过维持肠道干细胞维持肠上皮稳态。
肠道内稳态是通过肠道干细胞(ISCs)的自我更新来维持的,这些干细胞不断分裂并产生增殖过渡扩增(TA)和祖细胞。真核生物翻译起始因子5A (eIF5A)是一种保守的翻译因子,参与多种细胞过程,但其在肠道内稳态中的作用尚不清楚。在这里,我们证明了eIF5A对于维持肠上皮稳态是不可或缺的。成年小鼠肠上皮条件敲除Eif5a可导致干细胞丢失,抑制细胞增殖,增加隐窝内的凋亡,同时肠道长度缩短,小鼠体重减轻,动物死亡率加快。与此一致的是,类肠道器官中的Eif5a缺失也表现出类似于细胞表型。质谱分析显示,在eIF5A缺失时,线粒体蛋白,特别是参与线粒体翻译的蛋白显著下调。对已发表的单细胞RNA测序数据的分析表明,包括Dars2在内的线粒体翻译相关基因在ISC、TA和祖细胞中高度表达。此外,缺乏eif5a的类器官表现出线粒体功能受损,其特征是ATP水平降低和活性氧(ROS)增加。这些发现强调了eIF5A通过调节线粒体翻译在维持肠上皮稳态中的关键作用,为肠道干细胞更新和组织维持的分子机制提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Regeneration
Cell Regeneration Biochemistry, Genetics and Molecular Biology-Cell Biology
CiteScore
5.80
自引率
0.00%
发文量
42
审稿时长
35 days
期刊介绍: Cell Regeneration aims to provide a worldwide platform for researches on stem cells and regenerative biology to develop basic science and to foster its clinical translation in medicine. Cell Regeneration welcomes reports on novel discoveries, theories, methods, technologies, and products in the field of stem cells and regenerative research, the journal is interested, but not limited to the following topics: ◎ Embryonic stem cells ◎ Induced pluripotent stem cells ◎ Tissue-specific stem cells ◎ Tissue or organ regeneration ◎ Methodology ◎ Biomaterials and regeneration ◎ Clinical translation or application in medicine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信