In vitro assessment of polyethylene glycol-coated iron oxide nanoparticles integrating luteinizing hormone releasing-hormone targeted magnetic hyperthermia and doxorubicin for lung and breast cancer cells.
{"title":"In vitro assessment of polyethylene glycol-coated iron oxide nanoparticles integrating luteinizing hormone releasing-hormone targeted magnetic hyperthermia and doxorubicin for lung and breast cancer cells.","authors":"Neha Srivastava, Bhupendra Chudasama, Manoj Baranwal","doi":"10.1116/6.0004228","DOIUrl":null,"url":null,"abstract":"<p><p>Magnetic nanoparticle-based targeted hyperthermia, combined with chemotherapy, is a promising approach for cancer treatment. In this study, a targeted magnetic drug delivery system was developed, comprising doxorubicin (DOX), a [D-Trp6] luteinizing hormone-releasing hormone (LHRH) (Triptorelin) ligand, and a polyethylene glycol (PEG)-coated magnetite core, aiming to enhance cancer therapy efficacy. Fourier-transform infrared spectroscopy confirmed the conjugation of LHRH onto the PEG-coated Fe3O4 nanoparticles. Ultraviolet-visible spectroscopy was employed to assess drug loading, revealing a loading efficiency of 66%. The DOX-loaded, LHRH-tagged PEG-coated Fe3O4 nanoparticles were evaluated for their cytotoxic effects on A549 and MCF-7 cancer cell lines under three treatment modalities: thermotherapy, chemotherapy, and combined thermo-chemotherapy, both with and without the application of a magnetic field. Cell viability was assessed using the 2,5-diphenyltetrazolium bromide (MTT) assay. In A549 cells, the combined thermo-chemotherapy treatment at a DOX concentration of 10 μg/ml resulted in an 88% reduction in cell viability, outperforming chemotherapy alone (62%) and thermotherapy alone (47%). Similarly, in MCF-7 cells, the combined treatment at 8 μg/ml DOX led to a 91% reduction in viability, surpassing the effects of chemotherapy (57%) and thermotherapy (45%) individually. Additionally, the targeted DOX-loaded nanoparticles significantly elevated interferon-gamma production, indicating an enhanced immune response and increased cancer cell apoptosis.</p>","PeriodicalId":9053,"journal":{"name":"Biointerphases","volume":"20 3","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biointerphases","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1116/6.0004228","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Magnetic nanoparticle-based targeted hyperthermia, combined with chemotherapy, is a promising approach for cancer treatment. In this study, a targeted magnetic drug delivery system was developed, comprising doxorubicin (DOX), a [D-Trp6] luteinizing hormone-releasing hormone (LHRH) (Triptorelin) ligand, and a polyethylene glycol (PEG)-coated magnetite core, aiming to enhance cancer therapy efficacy. Fourier-transform infrared spectroscopy confirmed the conjugation of LHRH onto the PEG-coated Fe3O4 nanoparticles. Ultraviolet-visible spectroscopy was employed to assess drug loading, revealing a loading efficiency of 66%. The DOX-loaded, LHRH-tagged PEG-coated Fe3O4 nanoparticles were evaluated for their cytotoxic effects on A549 and MCF-7 cancer cell lines under three treatment modalities: thermotherapy, chemotherapy, and combined thermo-chemotherapy, both with and without the application of a magnetic field. Cell viability was assessed using the 2,5-diphenyltetrazolium bromide (MTT) assay. In A549 cells, the combined thermo-chemotherapy treatment at a DOX concentration of 10 μg/ml resulted in an 88% reduction in cell viability, outperforming chemotherapy alone (62%) and thermotherapy alone (47%). Similarly, in MCF-7 cells, the combined treatment at 8 μg/ml DOX led to a 91% reduction in viability, surpassing the effects of chemotherapy (57%) and thermotherapy (45%) individually. Additionally, the targeted DOX-loaded nanoparticles significantly elevated interferon-gamma production, indicating an enhanced immune response and increased cancer cell apoptosis.
期刊介绍:
Biointerphases emphasizes quantitative characterization of biomaterials and biological interfaces. As an interdisciplinary journal, a strong foundation of chemistry, physics, biology, engineering, theory, and/or modelling is incorporated into originated articles, reviews, and opinionated essays. In addition to regular submissions, the journal regularly features In Focus sections, targeted on specific topics and edited by experts in the field. Biointerphases is an international journal with excellence in scientific peer-review. Biointerphases is indexed in PubMed and the Science Citation Index (Clarivate Analytics). Accepted papers appear online immediately after proof processing and are uploaded to key citation sources daily. The journal is based on a mixed subscription and open-access model: Typically, authors can publish without any page charges but if the authors wish to publish open access, they can do so for a modest fee.
Topics include:
bio-surface modification
nano-bio interface
protein-surface interactions
cell-surface interactions
in vivo and in vitro systems
biofilms / biofouling
biosensors / biodiagnostics
bio on a chip
coatings
interface spectroscopy
biotribology / biorheology
molecular recognition
ambient diagnostic methods
interface modelling
adhesion phenomena.