Non-destructive luminescence and PET imaging to monitor tissue microenvironment in microphysiological systems during brain metastasis using dissociated cerebral organoids.

IF 8 2区 医学 Q1 ENGINEERING, BIOMEDICAL
Catherine Reed-McBain, Rithvik V Turaga, Seth R T Zima, Janmesh Patel, Anderson Weber Faletti Cunha, Jason Mixdorf, Lauren E Wehner, Jonathan W Engle, Reinier Hernandez, Stevens K Rehen, Helena L Borges, Jose M Ayuso
{"title":"Non-destructive luminescence and PET imaging to monitor tissue microenvironment in microphysiological systems during brain metastasis using dissociated cerebral organoids.","authors":"Catherine Reed-McBain, Rithvik V Turaga, Seth R T Zima, Janmesh Patel, Anderson Weber Faletti Cunha, Jason Mixdorf, Lauren E Wehner, Jonathan W Engle, Reinier Hernandez, Stevens K Rehen, Helena L Borges, Jose M Ayuso","doi":"10.1088/1758-5090/ade1fb","DOIUrl":null,"url":null,"abstract":"<p><p>During brain metastasis, tumor cells interact with the surrounding stroma, including neurons and astrocytes, to create a tumor-promoting microenvironment. However, the molecular and cellular factors driving tumor-neural stroma interactions remain unclear. Here, we developed a co-culture model of metastatic melanoma by combining metastatic melanoma cells with dissociated human iPSC-derived cerebral organoids, consisting of neurons and astrocytes, in a microfluidic device. We cultured these astrocytes and neurons in a 3D hydrogel that contained a domain with metastatic melanoma cells. This approach generated a spatially organized co-culture system with no physical boundary between the tumor and stromal compartments. Then, we leveraged several imaging modalities to study tumor-stroma interactions and changes in the microenvironment. Using non-destructive, luminescence-based methods, we spatially resolved changes in cell viability, metabolite concentration, and other biochemical parameters. We also used luminescence to analyze the effect of radionuclides on tumor cell viability and used PET imaging to monitor their diffusion across the system.</p>","PeriodicalId":8964,"journal":{"name":"Biofabrication","volume":" ","pages":""},"PeriodicalIF":8.0000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofabrication","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1758-5090/ade1fb","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

During brain metastasis, tumor cells interact with the surrounding stroma, including neurons and astrocytes, to create a tumor-promoting microenvironment. However, the molecular and cellular factors driving tumor-neural stroma interactions remain unclear. Here, we developed a co-culture model of metastatic melanoma by combining metastatic melanoma cells with dissociated human iPSC-derived cerebral organoids, consisting of neurons and astrocytes, in a microfluidic device. We cultured these astrocytes and neurons in a 3D hydrogel that contained a domain with metastatic melanoma cells. This approach generated a spatially organized co-culture system with no physical boundary between the tumor and stromal compartments. Then, we leveraged several imaging modalities to study tumor-stroma interactions and changes in the microenvironment. Using non-destructive, luminescence-based methods, we spatially resolved changes in cell viability, metabolite concentration, and other biochemical parameters. We also used luminescence to analyze the effect of radionuclides on tumor cell viability and used PET imaging to monitor their diffusion across the system.

利用游离脑类器官监测脑转移过程中微生理系统组织微环境的无损发光和PET成像。
在脑转移过程中,肿瘤细胞与周围的基质相互作用,包括神经元和星形胶质细胞,创造一个促进肿瘤的微环境。然而,驱动肿瘤-神经基质相互作用的分子和细胞因素仍不清楚。在这里,我们通过将转移性黑色素瘤细胞与分离的人类ipsc衍生的脑类器官(由神经元和星形胶质细胞组成)结合在微流控装置中,建立了转移性黑色素瘤共培养模型。我们将这些星形胶质细胞和神经元培养在含有转移性黑色素瘤细胞结构域的3D水凝胶中。这种方法产生了一个空间组织的共培养系统,肿瘤和间质室之间没有物理边界。然后,我们利用几种成像方式来研究肿瘤-基质相互作用和微环境的变化。使用非破坏性的、基于发光的方法,我们在空间上分辨了细胞活力、代谢物浓度和其他生化参数的变化。我们还使用发光分析放射性核素对肿瘤细胞活力的影响,并使用PET成像监测其在系统中的扩散。 。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biofabrication
Biofabrication ENGINEERING, BIOMEDICAL-MATERIALS SCIENCE, BIOMATERIALS
CiteScore
17.40
自引率
3.30%
发文量
118
审稿时长
2 months
期刊介绍: Biofabrication is dedicated to advancing cutting-edge research on the utilization of cells, proteins, biological materials, and biomaterials as fundamental components for the construction of biological systems and/or therapeutic products. Additionally, it proudly serves as the official journal of the International Society for Biofabrication (ISBF).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信