An Ensemble Machine Learning Model for Early Prediction of Vancomycin-Induced Acute Kidney Injury in ICU Patients.

IF 2 Q1 EMERGENCY MEDICINE
Archives of Academic Emergency Medicine Pub Date : 2025-04-15 eCollection Date: 2025-01-01 DOI:10.22037/aaemj.v13i1.2560
Faezeh Aghamirzaei, Ahmad Ali Abin, Farzaneh Futuhi
{"title":"An Ensemble Machine Learning Model for Early Prediction of Vancomycin-Induced Acute Kidney Injury in ICU Patients.","authors":"Faezeh Aghamirzaei, Ahmad Ali Abin, Farzaneh Futuhi","doi":"10.22037/aaemj.v13i1.2560","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Acute Kidney Injury (AKI) is a severe complication of vancomycin treatment due to its nephrotoxic effects. However, research on predicting AKI in this high-risk group remains limited. This study presents a stacking ensemble machine learning model designed to predict the onset of AKI in this patient population.</p><p><strong>Methods: </strong>Leveraging data from 314 ICU patients, the model incorporates SHapley Additive exPlanations (SHAP) for enhanced interpretability, identifying key predictors such as serum creatinine levels, glucose variability, and patient age. The model achieved an Area Under the Curve (AUC) of 0.94, outperforming existing predictive approaches. By utilizing readily available clinical data and determining an optimal temporal prediction window, this model facilitates proactive clinical decision-making, aiming to reduce the risk of AKI and improve patient outcomes.</p><p><strong>Results: </strong>The stacking ensemble model achieved 92\\% accuracy, 93\\% precision, 92\\% sensitivity, and 0.94 AUC in 314 ICU patients, pinpointing creatinine, glucose variability, and age as critical AKI predictors.</p><p><strong>Conclusion: </strong>The findings suggest that integrating advanced machine learning techniques with interpretable artificial intelligence (AI) can provide a scalable and cost-effective solution for early AKI detection in diverse healthcare settings.</p>","PeriodicalId":8146,"journal":{"name":"Archives of Academic Emergency Medicine","volume":"13 1","pages":"e45"},"PeriodicalIF":2.0000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12145186/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Academic Emergency Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22037/aaemj.v13i1.2560","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"EMERGENCY MEDICINE","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Acute Kidney Injury (AKI) is a severe complication of vancomycin treatment due to its nephrotoxic effects. However, research on predicting AKI in this high-risk group remains limited. This study presents a stacking ensemble machine learning model designed to predict the onset of AKI in this patient population.

Methods: Leveraging data from 314 ICU patients, the model incorporates SHapley Additive exPlanations (SHAP) for enhanced interpretability, identifying key predictors such as serum creatinine levels, glucose variability, and patient age. The model achieved an Area Under the Curve (AUC) of 0.94, outperforming existing predictive approaches. By utilizing readily available clinical data and determining an optimal temporal prediction window, this model facilitates proactive clinical decision-making, aiming to reduce the risk of AKI and improve patient outcomes.

Results: The stacking ensemble model achieved 92\% accuracy, 93\% precision, 92\% sensitivity, and 0.94 AUC in 314 ICU patients, pinpointing creatinine, glucose variability, and age as critical AKI predictors.

Conclusion: The findings suggest that integrating advanced machine learning techniques with interpretable artificial intelligence (AI) can provide a scalable and cost-effective solution for early AKI detection in diverse healthcare settings.

Abstract Image

Abstract Image

Abstract Image

万古霉素致ICU患者急性肾损伤早期预测的集成机器学习模型。
简介:急性肾损伤(AKI)是万古霉素治疗的严重并发症,因其肾毒性作用。然而,预测这一高危人群AKI的研究仍然有限。本研究提出了一个堆叠集成机器学习模型,旨在预测该患者群体中AKI的发病。方法:利用来自314名ICU患者的数据,该模型采用SHapley加性解释(SHAP)来增强可解释性,确定血清肌酐水平、血糖变异性和患者年龄等关键预测因素。该模型的曲线下面积(AUC)为0.94,优于现有的预测方法。通过利用现成的临床数据和确定最佳的时间预测窗口,该模型促进了前瞻性的临床决策,旨在降低AKI的风险并改善患者的预后。结果:堆叠集成模型在314例ICU患者中获得了92%的准确度、93%的精密度、92%的灵敏度和0.94的AUC,确定了肌酐、血糖变异性和年龄是AKI的关键预测因子。结论:研究结果表明,将先进的机器学习技术与可解释的人工智能(AI)相结合,可以为不同医疗机构的早期AKI检测提供一种可扩展且具有成本效益的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Archives of Academic Emergency Medicine
Archives of Academic Emergency Medicine Medicine-Emergency Medicine
CiteScore
8.90
自引率
7.40%
发文量
0
审稿时长
6 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信