{"title":"Using high speed visualization to identify variations in the formation and distribution of plasmonic microbubbles.","authors":"Mohammad Amer Allaf, Koji Okamoto, Takuto Owa","doi":"10.1063/5.0272623","DOIUrl":null,"url":null,"abstract":"<p><p>Plasmonic heating of gold nanoparticles (GNPs) using pulsed lasers (PLs) enables microbubble generation for imaging, diagnostics, and microfluidics. However, aggregation and photomodification cause inconsistencies (variations) in microbubble formation and distribution, particularly in pool-like environments where GNPs undergo aggregation and photomodification. This study experimentally investigates microbubble generation by heating GNPs (532 nm, nanoseconds PL) of various sizes and concentrations, using high-speed imaging (20 kfps). Results show unpredictable variations in bubble formation area (BFA), even under similar energy absorption. Large individual microbubbles were observed at relatively low energy absorption, primarily due to aggregation. Boiling on the transparent surface occurred in multiple tests, a phenomenon linked to optical pulling forces that deposited GNPs on the surface. This produced well-defined semi-circular bubbles (∼600 <i>μ</i>m) within 50 <i>μ</i>s. MB formation was more concentrated near the backward facing surface than along the laser beam, highlighting the role of optical pulling. Dissolved gas release influenced microbubble growth, particularly in samples prone to aggregation. In addition, prior laser pulses impacted BFA through photomodification and aggregation, sometimes reducing BFA despite higher energy absorption. This study provides new insights into the factors influencing microbubble formation and distribution in the plasmonic heating of GNPs. Understanding these mechanisms can help improve the reliability and efficiency of photothermal applications, enabling better control over plasmonic bubble generation for various scientific and technological advancements.</p>","PeriodicalId":7619,"journal":{"name":"AIP Advances","volume":"15 6","pages":"065109"},"PeriodicalIF":1.4000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12145202/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIP Advances","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1063/5.0272623","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Plasmonic heating of gold nanoparticles (GNPs) using pulsed lasers (PLs) enables microbubble generation for imaging, diagnostics, and microfluidics. However, aggregation and photomodification cause inconsistencies (variations) in microbubble formation and distribution, particularly in pool-like environments where GNPs undergo aggregation and photomodification. This study experimentally investigates microbubble generation by heating GNPs (532 nm, nanoseconds PL) of various sizes and concentrations, using high-speed imaging (20 kfps). Results show unpredictable variations in bubble formation area (BFA), even under similar energy absorption. Large individual microbubbles were observed at relatively low energy absorption, primarily due to aggregation. Boiling on the transparent surface occurred in multiple tests, a phenomenon linked to optical pulling forces that deposited GNPs on the surface. This produced well-defined semi-circular bubbles (∼600 μm) within 50 μs. MB formation was more concentrated near the backward facing surface than along the laser beam, highlighting the role of optical pulling. Dissolved gas release influenced microbubble growth, particularly in samples prone to aggregation. In addition, prior laser pulses impacted BFA through photomodification and aggregation, sometimes reducing BFA despite higher energy absorption. This study provides new insights into the factors influencing microbubble formation and distribution in the plasmonic heating of GNPs. Understanding these mechanisms can help improve the reliability and efficiency of photothermal applications, enabling better control over plasmonic bubble generation for various scientific and technological advancements.
期刊介绍:
AIP Advances is an open access journal publishing in all areas of physical sciences—applied, theoretical, and experimental. All published articles are freely available to read, download, and share. The journal prides itself on the belief that all good science is important and relevant. Our inclusive scope and publication standards make it an essential outlet for scientists in the physical sciences.
AIP Advances is a community-based journal, with a fast production cycle. The quick publication process and open-access model allows us to quickly distribute new scientific concepts. Our Editors, assisted by peer review, determine whether a manuscript is technically correct and original. After publication, the readership evaluates whether a manuscript is timely, relevant, or significant.