Archanalakshmi Kambaru, Sneha Jos, Igor Lobov, Bagautdin Bagautdinov, Sivaraman Padavattan
{"title":"Crystal structure of 4-amino-5-hydroxymethyl-2-methyl pyrimidine phosphate kinase (HMPP kinase) from Thermus thermophilus HB8.","authors":"Archanalakshmi Kambaru, Sneha Jos, Igor Lobov, Bagautdin Bagautdinov, Sivaraman Padavattan","doi":"10.1007/s00249-025-01760-0","DOIUrl":null,"url":null,"abstract":"<p><p>The thiamine (vitamin B1) biosynthesis pathway is essential for most prokaryotes and some eukaryotes, including yeasts and plants. The 4-amino-5-hydroxymethyl-2-methylpyrimidine phosphate kinase (HMPP kinase), encoded by the thiD gene, catalyzes two phosphorylation reactions involving intermediates in this pathway, ultimately producing thiamine pyrophosphate, the active form of thiamine. Here, we present the crystal structure of HMPP kinase from Thermus thermophilus HB8 (TtHMPPK), resolved at a resolution of 2.05 Å. The asymmetric unit of the TtHMPPK structure includes one protomer, though it functions as a homodimer in its active form, like the HMPP kinase from Salmonella typhimurium. The TtHMPPK protomer is an α/β protein featuring nine β-sheets flanked by eight structurally conserved α-helices, which are characteristic of the ribokinase family. The structure reveals a Rossmann β-α-β motif, commonly found in nucleotide-binding proteins. Structural analysis of TtHMPPK, compared to the Salmonella typhimurium HMPP kinase, indicates that Ala16, Thr40, Gln42, Ala78, and Val105 are active site residues involved in catalysis. The structural studies suggest that TtHMPPK belongs to the ribokinase superfamily and exhibits structural similarities with an enzyme containing a Rossmann-like structural motif (RLM). This Rossmann fold enables HMPP kinase to catalyze the phosphorylation of HMPP, a critical step in thiamine production.</p>","PeriodicalId":548,"journal":{"name":"European Biophysics Journal","volume":" ","pages":"247-256"},"PeriodicalIF":2.4000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Biophysics Journal","FirstCategoryId":"2","ListUrlMain":"https://doi.org/10.1007/s00249-025-01760-0","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/8 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The thiamine (vitamin B1) biosynthesis pathway is essential for most prokaryotes and some eukaryotes, including yeasts and plants. The 4-amino-5-hydroxymethyl-2-methylpyrimidine phosphate kinase (HMPP kinase), encoded by the thiD gene, catalyzes two phosphorylation reactions involving intermediates in this pathway, ultimately producing thiamine pyrophosphate, the active form of thiamine. Here, we present the crystal structure of HMPP kinase from Thermus thermophilus HB8 (TtHMPPK), resolved at a resolution of 2.05 Å. The asymmetric unit of the TtHMPPK structure includes one protomer, though it functions as a homodimer in its active form, like the HMPP kinase from Salmonella typhimurium. The TtHMPPK protomer is an α/β protein featuring nine β-sheets flanked by eight structurally conserved α-helices, which are characteristic of the ribokinase family. The structure reveals a Rossmann β-α-β motif, commonly found in nucleotide-binding proteins. Structural analysis of TtHMPPK, compared to the Salmonella typhimurium HMPP kinase, indicates that Ala16, Thr40, Gln42, Ala78, and Val105 are active site residues involved in catalysis. The structural studies suggest that TtHMPPK belongs to the ribokinase superfamily and exhibits structural similarities with an enzyme containing a Rossmann-like structural motif (RLM). This Rossmann fold enables HMPP kinase to catalyze the phosphorylation of HMPP, a critical step in thiamine production.
期刊介绍:
The journal publishes papers in the field of biophysics, which is defined as the study of biological phenomena by using physical methods and concepts. Original papers, reviews and Biophysics letters are published. The primary goal of this journal is to advance the understanding of biological structure and function by application of the principles of physical science, and by presenting the work in a biophysical context.
Papers employing a distinctively biophysical approach at all levels of biological organisation will be considered, as will both experimental and theoretical studies. The criteria for acceptance are scientific content, originality and relevance to biological systems of current interest and importance.
Principal areas of interest include:
- Structure and dynamics of biological macromolecules
- Membrane biophysics and ion channels
- Cell biophysics and organisation
- Macromolecular assemblies
- Biophysical methods and instrumentation
- Advanced microscopics
- System dynamics.