Application of process analytical technology for real-time monitoring of synthetic co-culture bioprocesses.

IF 3.8 2区 化学 Q1 BIOCHEMICAL RESEARCH METHODS
Nicole A Dambruin, Jack T Pronk, Marieke E Klijn
{"title":"Application of process analytical technology for real-time monitoring of synthetic co-culture bioprocesses.","authors":"Nicole A Dambruin, Jack T Pronk, Marieke E Klijn","doi":"10.1007/s00216-025-05949-2","DOIUrl":null,"url":null,"abstract":"<p><p>Synthetic microbial co-cultures can enhance bioprocess performance by division-of-labor strategies that, through spatial segregation of product-pathway modules, circumvent or mitigate negative impacts of the expression of an entire product pathway in a single microorganism. Relative abundance of the microbial partners is a key parameter for the performance of such co-cultures. Population control strategies based on genetic engineering have been explored, but the required interventions may impose an additional metabolic burden and thereby negatively affect co-culture performance. Regulation of co-culture composition by controlled substrate feeding strategies or temperature control requires real-time population monitoring. Process analytical technology (PAT) is an approach for real-time monitoring and control of processes, enabling continuous observation of co-cultivation that may serve as a foundation for population control strategies. In this review, we discuss PAT methods for monitoring synthetic co-cultures, either through direct biomass measurements or by tracking soluble or volatile metabolites. We discuss advantages, limitations, and applications of established as well as emerging technologies and conclude that leveraging PAT for precise, real-time population control has the potential to enhance stability, efficiency, and industrial scalability of synthetic co-cultures.</p>","PeriodicalId":462,"journal":{"name":"Analytical and Bioanalytical Chemistry","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical and Bioanalytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s00216-025-05949-2","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Synthetic microbial co-cultures can enhance bioprocess performance by division-of-labor strategies that, through spatial segregation of product-pathway modules, circumvent or mitigate negative impacts of the expression of an entire product pathway in a single microorganism. Relative abundance of the microbial partners is a key parameter for the performance of such co-cultures. Population control strategies based on genetic engineering have been explored, but the required interventions may impose an additional metabolic burden and thereby negatively affect co-culture performance. Regulation of co-culture composition by controlled substrate feeding strategies or temperature control requires real-time population monitoring. Process analytical technology (PAT) is an approach for real-time monitoring and control of processes, enabling continuous observation of co-cultivation that may serve as a foundation for population control strategies. In this review, we discuss PAT methods for monitoring synthetic co-cultures, either through direct biomass measurements or by tracking soluble or volatile metabolites. We discuss advantages, limitations, and applications of established as well as emerging technologies and conclude that leveraging PAT for precise, real-time population control has the potential to enhance stability, efficiency, and industrial scalability of synthetic co-cultures.

过程分析技术在合成共培养生物过程实时监测中的应用。
合成微生物共培养物可以通过分工策略提高生物过程性能,通过产品-途径模块的空间隔离,规避或减轻单个微生物中整个产品途径表达的负面影响。微生物伴侣的相对丰度是这种共培养性能的关键参数。已经探索了基于基因工程的种群控制策略,但所需的干预措施可能会增加代谢负担,从而对共培养性能产生负面影响。通过控制底物投料策略或温度控制来调节共培养组成需要实时种群监测。过程分析技术(PAT)是一种实时监测和控制过程的方法,可以连续观察共同栽培,作为人口控制战略的基础。在这篇综述中,我们讨论了通过直接生物量测量或跟踪可溶性或挥发性代谢物来监测合成共培养物的PAT方法。我们讨论了现有技术和新兴技术的优势、局限性和应用,并得出结论:利用PAT进行精确、实时的种群控制,有可能提高合成共培养物的稳定性、效率和工业可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.00
自引率
4.70%
发文量
638
审稿时长
2.1 months
期刊介绍: Analytical and Bioanalytical Chemistry’s mission is the rapid publication of excellent and high-impact research articles on fundamental and applied topics of analytical and bioanalytical measurement science. Its scope is broad, and ranges from novel measurement platforms and their characterization to multidisciplinary approaches that effectively address important scientific problems. The Editors encourage submissions presenting innovative analytical research in concept, instrumentation, methods, and/or applications, including: mass spectrometry, spectroscopy, and electroanalysis; advanced separations; analytical strategies in “-omics” and imaging, bioanalysis, and sampling; miniaturized devices, medical diagnostics, sensors; analytical characterization of nano- and biomaterials; chemometrics and advanced data analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信