Unraveling the relationship between PET surfaces and their hydrolases.

IF 11.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Marie Sofie Møller, Anton Bleckert, Anna Jäckering, Birgit Strodel
{"title":"Unraveling the relationship between PET surfaces and their hydrolases.","authors":"Marie Sofie Møller, Anton Bleckert, Anna Jäckering, Birgit Strodel","doi":"10.1016/j.tibs.2025.05.002","DOIUrl":null,"url":null,"abstract":"<p><p>Plastics, especially polyethylene terephthalate (PET), are vital in modern life, with global production exceeding 400 million tons annually. This extensive use has led to significant plastic waste pollution, highlighting the need for effective recycling strategies. PET, one of the most recycled plastics, is a prime candidate for degradation into its original monomers through engineered PET hydrolases - enzymes with industrial potential. While previous engineering efforts have mainly focused on enhancing thermostability and catalytic efficiency, the crucial aspect of enzyme adsorption to PET surfaces has received less attention. This review specifically addresses the mechanisms of enzyme adsorption, detailing relevant experimental methods and simulation techniques while emphasizing the potential for engineering more effective PET hydrolases.</p>","PeriodicalId":440,"journal":{"name":"Trends in Biochemical Sciences","volume":" ","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2025-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Biochemical Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.tibs.2025.05.002","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Plastics, especially polyethylene terephthalate (PET), are vital in modern life, with global production exceeding 400 million tons annually. This extensive use has led to significant plastic waste pollution, highlighting the need for effective recycling strategies. PET, one of the most recycled plastics, is a prime candidate for degradation into its original monomers through engineered PET hydrolases - enzymes with industrial potential. While previous engineering efforts have mainly focused on enhancing thermostability and catalytic efficiency, the crucial aspect of enzyme adsorption to PET surfaces has received less attention. This review specifically addresses the mechanisms of enzyme adsorption, detailing relevant experimental methods and simulation techniques while emphasizing the potential for engineering more effective PET hydrolases.

揭示PET表面及其水解酶之间的关系。
塑料,尤其是聚对苯二甲酸乙二醇酯(PET),在现代生活中至关重要,全球年产量超过4亿吨。这种广泛的使用导致了严重的塑料废物污染,突出了有效回收战略的必要性。PET是回收最多的塑料之一,是通过工程PET水解酶(具有工业潜力的酶)降解成其原始单体的主要候选者。虽然以前的工程努力主要集中在提高热稳定性和催化效率上,但酶在PET表面吸附的关键方面却很少受到关注。这篇综述特别讨论了酶吸附的机制,详细介绍了相关的实验方法和模拟技术,同时强调了工程上更有效的PET水解酶的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Trends in Biochemical Sciences
Trends in Biochemical Sciences 生物-生化与分子生物学
CiteScore
22.90
自引率
0.70%
发文量
148
审稿时长
6-12 weeks
期刊介绍: For over 40 years, Trends in Biochemical Sciences (TIBS) has been a leading publication keeping readers informed about recent advances in all areas of biochemistry and molecular biology. Through monthly, peer-reviewed issues, TIBS covers a wide range of topics, from traditional subjects like protein structure and function to emerging areas in signaling and metabolism. Articles are curated by the Editor and authored by top researchers in their fields, with a focus on moving beyond simple literature summaries to providing novel insights and perspectives. Each issue primarily features concise and timely Reviews and Opinions, supplemented by shorter articles including Spotlights, Forums, and Technology of the Month, as well as impactful pieces like Science & Society and Scientific Life articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信