Mechanism of Self-Assembled Cubic InGaN/GaN Quantum Well Formation in Metal-Modulated Molecular Beam Epitaxy.

IF 3.2 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Crystal Growth & Design Pub Date : 2025-05-17 eCollection Date: 2025-06-04 DOI:10.1021/acs.cgd.5c00202
Mario F Zscherp, Silas A Jentsch, Vitalii Lider, Matthew Chia, Andreas Beyer, Anja Henss, Donat J As, Kerstin Volz, Sangam Chatterjee, Jörg Schörmann
{"title":"Mechanism of Self-Assembled Cubic InGaN/GaN Quantum Well Formation in Metal-Modulated Molecular Beam Epitaxy.","authors":"Mario F Zscherp, Silas A Jentsch, Vitalii Lider, Matthew Chia, Andreas Beyer, Anja Henss, Donat J As, Kerstin Volz, Sangam Chatterjee, Jörg Schörmann","doi":"10.1021/acs.cgd.5c00202","DOIUrl":null,"url":null,"abstract":"<p><p>Alternating metal-modulated molecular beam epitaxy enables the growth of both self-assembled c-InGaN/GaN quantum wells and fully alloyed c-InGaN layers. <i>In situ</i> reflection high-energy electron diffraction (RHEED) analysis coupled with <i>ex situ</i> structural characterization investigates the growth mechanism and prerequisites for the self-assembled c-InGaN quantum well formation. The data reveal that indium accumulates without incorporating into the underlying c-GaN layer during an indium deposition step. However, the accumulated indium forms c-InGaN during a subsequent GaN growth step consistent with vertical cation segregation. Furthermore, X-ray diffraction, time-of-flight secondary ion mass spectrometry depth profiles, and scanning transmission electron microscopy imaging show homogeneous and well-defined c-InGaN layers. The presented growth mechanism requires high substrate temperatures and gallium fluxes. Still, limit testing suggests that indium contents of up to 37% are feasible. This encourages the implementation of metal-modulated grown c-InGaN in red light-emitting devices. Furthermore, combining RHEED operando diagnostics and a precise understanding of the growth mechanism is vital for progressing toward automated growth of complex heterostructures.</p>","PeriodicalId":34,"journal":{"name":"Crystal Growth & Design","volume":"25 11","pages":"3793-3799"},"PeriodicalIF":3.2000,"publicationDate":"2025-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12142808/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystal Growth & Design","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.cgd.5c00202","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/4 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Alternating metal-modulated molecular beam epitaxy enables the growth of both self-assembled c-InGaN/GaN quantum wells and fully alloyed c-InGaN layers. In situ reflection high-energy electron diffraction (RHEED) analysis coupled with ex situ structural characterization investigates the growth mechanism and prerequisites for the self-assembled c-InGaN quantum well formation. The data reveal that indium accumulates without incorporating into the underlying c-GaN layer during an indium deposition step. However, the accumulated indium forms c-InGaN during a subsequent GaN growth step consistent with vertical cation segregation. Furthermore, X-ray diffraction, time-of-flight secondary ion mass spectrometry depth profiles, and scanning transmission electron microscopy imaging show homogeneous and well-defined c-InGaN layers. The presented growth mechanism requires high substrate temperatures and gallium fluxes. Still, limit testing suggests that indium contents of up to 37% are feasible. This encourages the implementation of metal-modulated grown c-InGaN in red light-emitting devices. Furthermore, combining RHEED operando diagnostics and a precise understanding of the growth mechanism is vital for progressing toward automated growth of complex heterostructures.

金属调制分子束外延中自组装立方InGaN/GaN量子阱形成机制。
交替金属调制分子束外延使自组装c-InGaN/GaN量子阱和全合金c-InGaN层的生长成为可能。原位反射高能电子衍射(RHEED)分析结合非原位结构表征研究了自组装c-InGaN量子阱形成的生长机制和先决条件。数据显示,在铟沉积步骤中,铟积累而不结合到下面的c-GaN层中。然而,在随后与垂直阳离子偏析一致的GaN生长步骤中,积累的铟形成c-InGaN。此外,x射线衍射,飞行时间二次离子质谱深度剖面和扫描透射电子显微镜成像显示均匀且定义明确的c-InGaN层。所提出的生长机制需要较高的衬底温度和镓通量。尽管如此,限量测试表明,铟含量高达37%是可行的。这鼓励了金属调制生长c-InGaN在红色发光器件中的实现。此外,结合RHEED操作蛋白诊断和对生长机制的精确理解对于复杂异质结构的自动化生长至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Crystal Growth & Design
Crystal Growth & Design 化学-材料科学:综合
CiteScore
6.30
自引率
10.50%
发文量
650
审稿时长
1.9 months
期刊介绍: The aim of Crystal Growth & Design is to stimulate crossfertilization of knowledge among scientists and engineers working in the fields of crystal growth, crystal engineering, and the industrial application of crystalline materials. Crystal Growth & Design publishes theoretical and experimental studies of the physical, chemical, and biological phenomena and processes related to the design, growth, and application of crystalline materials. Synergistic approaches originating from different disciplines and technologies and integrating the fields of crystal growth, crystal engineering, intermolecular interactions, and industrial application are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信