Insights on Zosteric Acid Analogues Activity Against Candida albicans Biofilm Formation.

IF 4.3 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
ACS Omega Pub Date : 2025-05-20 eCollection Date: 2025-06-03 DOI:10.1021/acsomega.5c03581
Cristina Cattò, Enrico M A Fassi, Giovanni Grazioso, Arianna Gelain, Stefania Villa, Francesca Cappitelli
{"title":"Insights on Zosteric Acid Analogues Activity Against Candida albicans Biofilm Formation.","authors":"Cristina Cattò, Enrico M A Fassi, Giovanni Grazioso, Arianna Gelain, Stefania Villa, Francesca Cappitelli","doi":"10.1021/acsomega.5c03581","DOIUrl":null,"url":null,"abstract":"<p><p>Zosteric acid (ZA), or <i>p</i>-(sulphooxy)-cinnamic acid, is a secondary metabolite of the seagrass Zostera marina able to reduce biofilm formation of a wide range of bacteria and fungi, through a nonbiocidal mode of action. However, the lack of information concerning the specific chemical structural elements responsible for ZA's antibiofilm activity has hindered the scaling up of this green-based technology for real applications. In this study, a small library of molecules based on ZA scaffold diversity was screened against the eukaryotic fungus Candida albicans, in order to identify the key chemical features of ZA necessary for inhibiting fungal biofilm at sublethal concentrations. Results, supported by multivariate statistical analysis, revealed that the presence of (i) the <i>trans</i> (<i>E</i>) double bond, (ii) the free carboxylic group in the side chain, and (iii) the <i>para</i> substitution with a hydroxyl group were all instrumental for maintaining the antibiofilm activity of the molecules. Additionally, molecular modeling studies suggested that the best performing derivatives interacted with NADP-(H) quinone oxidoreductase, influencing the microbial redox balance.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":"10 21","pages":"22285-22295"},"PeriodicalIF":4.3000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12138599/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acsomega.5c03581","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/3 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Zosteric acid (ZA), or p-(sulphooxy)-cinnamic acid, is a secondary metabolite of the seagrass Zostera marina able to reduce biofilm formation of a wide range of bacteria and fungi, through a nonbiocidal mode of action. However, the lack of information concerning the specific chemical structural elements responsible for ZA's antibiofilm activity has hindered the scaling up of this green-based technology for real applications. In this study, a small library of molecules based on ZA scaffold diversity was screened against the eukaryotic fungus Candida albicans, in order to identify the key chemical features of ZA necessary for inhibiting fungal biofilm at sublethal concentrations. Results, supported by multivariate statistical analysis, revealed that the presence of (i) the trans (E) double bond, (ii) the free carboxylic group in the side chain, and (iii) the para substitution with a hydroxyl group were all instrumental for maintaining the antibiofilm activity of the molecules. Additionally, molecular modeling studies suggested that the best performing derivatives interacted with NADP-(H) quinone oxidoreductase, influencing the microbial redox balance.

Abstract Image

Abstract Image

Abstract Image

zoster酸类似物抗白色念珠菌生物膜形成的研究进展。
Zosteric acid (ZA),或对(磺化)-肉桂酸,是海草Zostera marina的次级代谢物,能够通过非生物杀灭方式减少多种细菌和真菌的生物膜形成。然而,由于缺乏有关ZA抗菌膜活性的具体化学结构元素的信息,阻碍了这种绿色技术的实际应用。在这项研究中,我们筛选了一个基于ZA支架多样性的小分子文库,以对抗真核真菌白色念珠菌,以确定ZA在亚致死浓度下抑制真菌生物膜所必需的关键化学特征。多元统计分析结果表明,(i)反式(E)双键,(ii)侧链上的游离羧基,以及(iii)羟基对取代的存在都有助于维持分子的抗生物膜活性。此外,分子模拟研究表明,表现最好的衍生物与NADP-(H)醌氧化还原酶相互作用,影响微生物氧化还原平衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Omega
ACS Omega Chemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍: ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信