Cristina Cattò, Enrico M A Fassi, Giovanni Grazioso, Arianna Gelain, Stefania Villa, Francesca Cappitelli
{"title":"Insights on Zosteric Acid Analogues Activity Against Candida albicans Biofilm Formation.","authors":"Cristina Cattò, Enrico M A Fassi, Giovanni Grazioso, Arianna Gelain, Stefania Villa, Francesca Cappitelli","doi":"10.1021/acsomega.5c03581","DOIUrl":null,"url":null,"abstract":"<p><p>Zosteric acid (ZA), or <i>p</i>-(sulphooxy)-cinnamic acid, is a secondary metabolite of the seagrass Zostera marina able to reduce biofilm formation of a wide range of bacteria and fungi, through a nonbiocidal mode of action. However, the lack of information concerning the specific chemical structural elements responsible for ZA's antibiofilm activity has hindered the scaling up of this green-based technology for real applications. In this study, a small library of molecules based on ZA scaffold diversity was screened against the eukaryotic fungus Candida albicans, in order to identify the key chemical features of ZA necessary for inhibiting fungal biofilm at sublethal concentrations. Results, supported by multivariate statistical analysis, revealed that the presence of (i) the <i>trans</i> (<i>E</i>) double bond, (ii) the free carboxylic group in the side chain, and (iii) the <i>para</i> substitution with a hydroxyl group were all instrumental for maintaining the antibiofilm activity of the molecules. Additionally, molecular modeling studies suggested that the best performing derivatives interacted with NADP-(H) quinone oxidoreductase, influencing the microbial redox balance.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":"10 21","pages":"22285-22295"},"PeriodicalIF":4.3000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12138599/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acsomega.5c03581","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/3 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Zosteric acid (ZA), or p-(sulphooxy)-cinnamic acid, is a secondary metabolite of the seagrass Zostera marina able to reduce biofilm formation of a wide range of bacteria and fungi, through a nonbiocidal mode of action. However, the lack of information concerning the specific chemical structural elements responsible for ZA's antibiofilm activity has hindered the scaling up of this green-based technology for real applications. In this study, a small library of molecules based on ZA scaffold diversity was screened against the eukaryotic fungus Candida albicans, in order to identify the key chemical features of ZA necessary for inhibiting fungal biofilm at sublethal concentrations. Results, supported by multivariate statistical analysis, revealed that the presence of (i) the trans (E) double bond, (ii) the free carboxylic group in the side chain, and (iii) the para substitution with a hydroxyl group were all instrumental for maintaining the antibiofilm activity of the molecules. Additionally, molecular modeling studies suggested that the best performing derivatives interacted with NADP-(H) quinone oxidoreductase, influencing the microbial redox balance.
ACS OmegaChemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍:
ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.