Elizabeth Mcavoy, Emma A. M. Stanley, Anthony J. Winder, Matthias Wilms, Nils D. Forkert
{"title":"Brain Aging in Patients With Cardiovascular Disease From the UK Biobank","authors":"Elizabeth Mcavoy, Emma A. M. Stanley, Anthony J. Winder, Matthias Wilms, Nils D. Forkert","doi":"10.1002/hbm.70252","DOIUrl":null,"url":null,"abstract":"<p>The brain undergoes complex but normal structural changes during the aging process in healthy adults, whereas deviations from the normal aging patterns of the brain can be indicative of various conditions as well as an increased risk for the development of diseases. The brain age gap (BAG), which is defined as the difference between the chronological age and the machine learning-predicted biological age of an individual, is a promising biomarker for determining whether an individual deviates from normal brain aging patterns. While the BAG has shown promise for various neurological diseases and cardiovascular risk factors, its utility to quantify brain changes associated with diagnosed cardiovascular diseases has not been investigated to date, which is the aim of this study. T1-weighted MRI scans from healthy participants in the UK Biobank were used to train a convolutional neural network (CNN) model for biological brain age prediction. The trained model was then used to quantify and compare the BAGs for all participants in the UK Biobank with known cardiovascular diseases, as well as healthy controls and patients with known neurological diseases for benchmark comparisons. Saliency maps were computed for each individual to investigate whether brain regions used for biological brain age prediction by the CNN differ between groups. The analyses revealed significant differences in BAG distributions for 10 of the 42 sex-specific cardiovascular disease groups investigated compared to healthy participants, indicating disease-specific variations in brain aging. However, no significant differences were found regarding the brain regions used for brain age prediction as determined by saliency maps, indicating that the model mostly relied on healthy brain aging patterns, even in the presence of cardiovascular diseases. Overall, the findings of this work demonstrate that the BAG is a sensitive imaging biomarker to detect differences in brain aging associated with specific cardiovascular diseases. This further supports the theory of the heart–brain axis by exemplifying that many cardiovascular diseases are associated with atypical brain aging.</p>","PeriodicalId":13019,"journal":{"name":"Human Brain Mapping","volume":"46 8","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hbm.70252","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Brain Mapping","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hbm.70252","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
The brain undergoes complex but normal structural changes during the aging process in healthy adults, whereas deviations from the normal aging patterns of the brain can be indicative of various conditions as well as an increased risk for the development of diseases. The brain age gap (BAG), which is defined as the difference between the chronological age and the machine learning-predicted biological age of an individual, is a promising biomarker for determining whether an individual deviates from normal brain aging patterns. While the BAG has shown promise for various neurological diseases and cardiovascular risk factors, its utility to quantify brain changes associated with diagnosed cardiovascular diseases has not been investigated to date, which is the aim of this study. T1-weighted MRI scans from healthy participants in the UK Biobank were used to train a convolutional neural network (CNN) model for biological brain age prediction. The trained model was then used to quantify and compare the BAGs for all participants in the UK Biobank with known cardiovascular diseases, as well as healthy controls and patients with known neurological diseases for benchmark comparisons. Saliency maps were computed for each individual to investigate whether brain regions used for biological brain age prediction by the CNN differ between groups. The analyses revealed significant differences in BAG distributions for 10 of the 42 sex-specific cardiovascular disease groups investigated compared to healthy participants, indicating disease-specific variations in brain aging. However, no significant differences were found regarding the brain regions used for brain age prediction as determined by saliency maps, indicating that the model mostly relied on healthy brain aging patterns, even in the presence of cardiovascular diseases. Overall, the findings of this work demonstrate that the BAG is a sensitive imaging biomarker to detect differences in brain aging associated with specific cardiovascular diseases. This further supports the theory of the heart–brain axis by exemplifying that many cardiovascular diseases are associated with atypical brain aging.
期刊介绍:
Human Brain Mapping publishes peer-reviewed basic, clinical, technical, and theoretical research in the interdisciplinary and rapidly expanding field of human brain mapping. The journal features research derived from non-invasive brain imaging modalities used to explore the spatial and temporal organization of the neural systems supporting human behavior. Imaging modalities of interest include positron emission tomography, event-related potentials, electro-and magnetoencephalography, magnetic resonance imaging, and single-photon emission tomography. Brain mapping research in both normal and clinical populations is encouraged.
Article formats include Research Articles, Review Articles, Clinical Case Studies, and Technique, as well as Technological Developments, Theoretical Articles, and Synthetic Reviews. Technical advances, such as novel brain imaging methods, analyses for detecting or localizing neural activity, synergistic uses of multiple imaging modalities, and strategies for the design of behavioral paradigms and neural-systems modeling are of particular interest. The journal endorses the propagation of methodological standards and encourages database development in the field of human brain mapping.