A Unified Control Design of Three Phase Inverters Suitable for Both Grid-Forming and Following Modes of Operation

IF 2.6 4区 工程技术 Q3 ENERGY & FUELS
Aravind Ingalalli, Ali Ihsan Aygun, Sukumar Kamalasadan
{"title":"A Unified Control Design of Three Phase Inverters Suitable for Both Grid-Forming and Following Modes of Operation","authors":"Aravind Ingalalli,&nbsp;Ali Ihsan Aygun,&nbsp;Sukumar Kamalasadan","doi":"10.1049/rpg2.70043","DOIUrl":null,"url":null,"abstract":"<p>The primary cascaded control loops and the phase-locked loop (PLL) can enable voltage source inverter operation in grid-forming and grid-following mode. This article proposes a unified control for such inverters with current control, voltage control, and power control loops, including the PLL impact on <span></span><math>\n <semantics>\n <mrow>\n <mi>a</mi>\n <mi>b</mi>\n <mi>c</mi>\n </mrow>\n <annotation>$abc$</annotation>\n </semantics></math>-<span></span><math>\n <semantics>\n <mrow>\n <mi>d</mi>\n <mi>q</mi>\n </mrow>\n <annotation>$dq$</annotation>\n </semantics></math> transformations as the building blocks. Small-signal-based linearization techniques are adopted to achieve the resultant linear time-invariant model. Moreover, a systematic definition of the unified controller is proposed to ensure the easy portability of the controller code in a model-driven development set-up. Model verification and experimental results of a 5 kW inverter set-up approve the efficacy of the proposed design approach.</p>","PeriodicalId":55000,"journal":{"name":"IET Renewable Power Generation","volume":"19 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rpg2.70043","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Renewable Power Generation","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/rpg2.70043","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The primary cascaded control loops and the phase-locked loop (PLL) can enable voltage source inverter operation in grid-forming and grid-following mode. This article proposes a unified control for such inverters with current control, voltage control, and power control loops, including the PLL impact on a b c $abc$ - d q $dq$ transformations as the building blocks. Small-signal-based linearization techniques are adopted to achieve the resultant linear time-invariant model. Moreover, a systematic definition of the unified controller is proposed to ensure the easy portability of the controller code in a model-driven development set-up. Model verification and experimental results of a 5 kW inverter set-up approve the efficacy of the proposed design approach.

适合并网及后续运行方式的三相逆变器统一控制设计
一级级联控制环和锁相环(PLL)可以使电压源逆变器在电网形成和电网跟随模式下工作。本文提出了以电流控制、电压控制和功率控制环为基础,以锁相环对abc$ abc$ - dq$ dq$变换的影响为基础,对该类逆变器进行统一控制。采用基于小信号的线性化技术实现线性定常模型。此外,提出了统一控制器的系统定义,以确保控制器代码在模型驱动的开发设置中易于移植。模型验证和5kw逆变器装置的实验结果验证了该设计方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IET Renewable Power Generation
IET Renewable Power Generation 工程技术-工程:电子与电气
CiteScore
6.80
自引率
11.50%
发文量
268
审稿时长
6.6 months
期刊介绍: IET Renewable Power Generation (RPG) brings together the topics of renewable energy technology, power generation and systems integration, with techno-economic issues. All renewable energy generation technologies are within the scope of the journal. Specific technology areas covered by the journal include: Wind power technology and systems Photovoltaics Solar thermal power generation Geothermal energy Fuel cells Wave power Marine current energy Biomass conversion and power generation What differentiates RPG from technology specific journals is a concern with power generation and how the characteristics of the different renewable sources affect electrical power conversion, including power electronic design, integration in to power systems, and techno-economic issues. Other technologies that have a direct role in sustainable power generation such as fuel cells and energy storage are also covered, as are system control approaches such as demand side management, which facilitate the integration of renewable sources into power systems, both large and small. The journal provides a forum for the presentation of new research, development and applications of renewable power generation. Demonstrations and experimentally based research are particularly valued, and modelling studies should as far as possible be validated so as to give confidence that the models are representative of real-world behavior. Research that explores issues where the characteristics of the renewable energy source and their control impact on the power conversion is welcome. Papers covering the wider areas of power system control and operation, including scheduling and protection that are central to the challenge of renewable power integration are particularly encouraged. The journal is technology focused covering design, demonstration, modelling and analysis, but papers covering techno-economic issues are also of interest. Papers presenting new modelling and theory are welcome but this must be relevant to real power systems and power generation. Most papers are expected to include significant novelty of approach or application that has general applicability, and where appropriate include experimental results. Critical reviews of relevant topics are also invited and these would be expected to be comprehensive and fully referenced. Current Special Issue. Call for papers: Power Quality and Protection in Renewable Energy Systems and Microgrids - https://digital-library.theiet.org/files/IET_RPG_CFP_PQPRESM.pdf Energy and Rail/Road Transportation Integrated Development - https://digital-library.theiet.org/files/IET_RPG_CFP_ERTID.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信