Fan Jiang, Huiyao Tan, Lulu Chen, Liang Hua Ye, Jian-Feng Li, Duo-Long Wu
{"title":"Enhanced Pixel Antenna Design and Optimization Through Dynamic Updating of Initial Structure","authors":"Fan Jiang, Huiyao Tan, Lulu Chen, Liang Hua Ye, Jian-Feng Li, Duo-Long Wu","doi":"10.1002/jnm.70067","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Dynamic updating technique for initial structure in pixel antenna design and optimization is proposed. The conventional approach to pixel antenna design employs a fixed initial pixel structure set at the start of the entire process, while rarely studying the setting of the initial structure; therefore, the performance potential is not fully exploited. The proposed approach adaptively updates the initial structure to enhance the performance of the pixel antenna design, aiming to find the optimal initial pixel structure that achieves miniaturization and broadband capabilities. In general, the design procedure starts with an initial structure with relatively big element size and small overall size, then gradually reduces the element size and expands the overall size of the pixel area. A two-port pixel antenna is used as a design example to validate the proposed updating technique. The goal was to design a dual-port pixel antenna operating in the band of 2.4–3.2 GHz, using a miniaturized size. After two rounds of updates, the obtained −10 dB impedance bandwidths increased from 0.44 GHz (2.47–2.91GHz) to 0.75 GHz (2.45–3.20 GHz) and to 1.07 GHz (2.35–3.42 GHz), while having isolation better than −15 dB. The statistical results of 10 optimization runs for 3 initial structures also showed the performance enhancement of each updated initial structure. The proposed updated technology can be applied to other types of pixel antenna designs, with different design specifications.</p>\n </div>","PeriodicalId":50300,"journal":{"name":"International Journal of Numerical Modelling-Electronic Networks Devices and Fields","volume":"38 3","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Numerical Modelling-Electronic Networks Devices and Fields","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jnm.70067","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Dynamic updating technique for initial structure in pixel antenna design and optimization is proposed. The conventional approach to pixel antenna design employs a fixed initial pixel structure set at the start of the entire process, while rarely studying the setting of the initial structure; therefore, the performance potential is not fully exploited. The proposed approach adaptively updates the initial structure to enhance the performance of the pixel antenna design, aiming to find the optimal initial pixel structure that achieves miniaturization and broadband capabilities. In general, the design procedure starts with an initial structure with relatively big element size and small overall size, then gradually reduces the element size and expands the overall size of the pixel area. A two-port pixel antenna is used as a design example to validate the proposed updating technique. The goal was to design a dual-port pixel antenna operating in the band of 2.4–3.2 GHz, using a miniaturized size. After two rounds of updates, the obtained −10 dB impedance bandwidths increased from 0.44 GHz (2.47–2.91GHz) to 0.75 GHz (2.45–3.20 GHz) and to 1.07 GHz (2.35–3.42 GHz), while having isolation better than −15 dB. The statistical results of 10 optimization runs for 3 initial structures also showed the performance enhancement of each updated initial structure. The proposed updated technology can be applied to other types of pixel antenna designs, with different design specifications.
期刊介绍:
Prediction through modelling forms the basis of engineering design. The computational power at the fingertips of the professional engineer is increasing enormously and techniques for computer simulation are changing rapidly. Engineers need models which relate to their design area and which are adaptable to new design concepts. They also need efficient and friendly ways of presenting, viewing and transmitting the data associated with their models.
The International Journal of Numerical Modelling: Electronic Networks, Devices and Fields provides a communication vehicle for numerical modelling methods and data preparation methods associated with electrical and electronic circuits and fields. It concentrates on numerical modelling rather than abstract numerical mathematics.
Contributions on numerical modelling will cover the entire subject of electrical and electronic engineering. They will range from electrical distribution networks to integrated circuits on VLSI design, and from static electric and magnetic fields through microwaves to optical design. They will also include the use of electrical networks as a modelling medium.