Charles A. Stock, John P. Dunne, Jessica Y. Luo, Andrew C. Ross, Nicolas Van Oostende, Niki Zadeh, Theresa J. Cordero, Xiao Liu, Yi-Cheng Teng
{"title":"Photoacclimation and Photoadaptation Sensitivity in a Global Ocean Ecosystem Model","authors":"Charles A. Stock, John P. Dunne, Jessica Y. Luo, Andrew C. Ross, Nicolas Van Oostende, Niki Zadeh, Theresa J. Cordero, Xiao Liu, Yi-Cheng Teng","doi":"10.1029/2024MS004701","DOIUrl":null,"url":null,"abstract":"<p>Chlorophyll underpins ocean productivity yet simulating chlorophyll across biomes, seasons and depths remains challenging for earth system models. Inconsistencies are often attributed to misrepresentation of the myriad nutrient supply, growth and loss processes that govern phytoplankton biomass. They may also arise, however, from unresolved or misspecified photoacclimation or photoadaptation responses. A series of global ocean ecosystem simulations were conducted to assess these latter sensitivities: alternative photoacclimation schemes implicitly modulated investments in light harvesting versus photodamage avoidance and other cellular functions. Photoadaptation experiments probed the impact of adding low- and high-light adapted phytoplankton ecotypes. Results showed that photoacclimation and photoadaptation alternatives generate chlorophyll differences exceeding a factor of 2 in some regions and seasons. In stratified waters, photoadaptation and acclimation to light levels over mixing depths consistent with the timescale of photoadaptation (days) benefitted model performance. In regions and seasons with deep mixed layers, surface-skewed photoacclimation yielded improved fidelity across satellite chlorophyll products. Large photoacclimation-driven differences in chlorophyll concentration had small impacts on primary productivity and carbon export, unlike those arising from changes in the nutrient supply. Improved photoacclimation and photoadaption constraints are thus needed to reduce ambiguities in the drivers of chlorophyll change and their biogeochemical implications.</p>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":"17 6","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024MS004701","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advances in Modeling Earth Systems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024MS004701","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Chlorophyll underpins ocean productivity yet simulating chlorophyll across biomes, seasons and depths remains challenging for earth system models. Inconsistencies are often attributed to misrepresentation of the myriad nutrient supply, growth and loss processes that govern phytoplankton biomass. They may also arise, however, from unresolved or misspecified photoacclimation or photoadaptation responses. A series of global ocean ecosystem simulations were conducted to assess these latter sensitivities: alternative photoacclimation schemes implicitly modulated investments in light harvesting versus photodamage avoidance and other cellular functions. Photoadaptation experiments probed the impact of adding low- and high-light adapted phytoplankton ecotypes. Results showed that photoacclimation and photoadaptation alternatives generate chlorophyll differences exceeding a factor of 2 in some regions and seasons. In stratified waters, photoadaptation and acclimation to light levels over mixing depths consistent with the timescale of photoadaptation (days) benefitted model performance. In regions and seasons with deep mixed layers, surface-skewed photoacclimation yielded improved fidelity across satellite chlorophyll products. Large photoacclimation-driven differences in chlorophyll concentration had small impacts on primary productivity and carbon export, unlike those arising from changes in the nutrient supply. Improved photoacclimation and photoadaption constraints are thus needed to reduce ambiguities in the drivers of chlorophyll change and their biogeochemical implications.
期刊介绍:
The Journal of Advances in Modeling Earth Systems (JAMES) is committed to advancing the science of Earth systems modeling by offering high-quality scientific research through online availability and open access licensing. JAMES invites authors and readers from the international Earth systems modeling community.
Open access. Articles are available free of charge for everyone with Internet access to view and download.
Formal peer review.
Supplemental material, such as code samples, images, and visualizations, is published at no additional charge.
No additional charge for color figures.
Modest page charges to cover production costs.
Articles published in high-quality full text PDF, HTML, and XML.
Internal and external reference linking, DOI registration, and forward linking via CrossRef.