From Acquisition to Prognosis: The Role of AI in Cardiac Magnetic Resonance Imaging Evaluation of Ischemic Cardiomyopathy

IF 1.6 4区 医学 Q3 CARDIAC & CARDIOVASCULAR SYSTEMS
Giuseppe Muscogiuri, Nicola Pegoraro, Alberto Cossu, Alessandro Caruso, Davide Casartelli, Francesco Severi, Gabrielle Gershon, Marly van Assen, Carlo N De Cecco, Marco Guglielmo, Tommaso D'Angelo, Luca Saba, Riccardo Cau, Paolo Marra, Aldo Carnevale, Melchiore Giganti, Sandro Sironi
{"title":"From Acquisition to Prognosis: The Role of AI in Cardiac Magnetic Resonance Imaging Evaluation of Ischemic Cardiomyopathy","authors":"Giuseppe Muscogiuri,&nbsp;Nicola Pegoraro,&nbsp;Alberto Cossu,&nbsp;Alessandro Caruso,&nbsp;Davide Casartelli,&nbsp;Francesco Severi,&nbsp;Gabrielle Gershon,&nbsp;Marly van Assen,&nbsp;Carlo N De Cecco,&nbsp;Marco Guglielmo,&nbsp;Tommaso D'Angelo,&nbsp;Luca Saba,&nbsp;Riccardo Cau,&nbsp;Paolo Marra,&nbsp;Aldo Carnevale,&nbsp;Melchiore Giganti,&nbsp;Sandro Sironi","doi":"10.1111/echo.70201","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Acute and chronic ischemic cardiomyopathy (ICM) still represents a leading cause of morbidity and mortality. Cardiac magnetic resonance (CMR) imaging plays a central role in the diagnosis and management of ICM, offering detailed visualization of cardiac structures and function. The evolving role of artificial intelligence (AI) in enhancing CMR exams, from acquisition to prognosis, is rapidly expanding in clinical practice, particularly in CMR of patients with ICM, emphasizing the integration of AI algorithms to optimize imaging workflows in standard protocols. Advanced AI models enable more efficient and faster image acquisition, reducing artifacts and enhancing accuracy, even offering free-breathing sequences. In post-processing, AI allows for the segmentation and quantification of cardiac parameters, facilitating precise assessment of volumes, myocardial scarring, and perfusion abnormalities, which are critical parameters in ICM. Moreover, AI-driven analysis provides robust prognostic insights by predicting adverse outcomes, such as heart failure and arrhythmias, through comprehensive data integration and pattern recognition. Looking forward, the future of AI in CMR promises further advancements in personalized medicine, with AI algorithms continually improving in accuracy and clinical applicability. This review will analyze the role of AI in increasing diagnostic accuracy, optimizing workflows, and improving prognosis in patients with ICM.</p>\n </div>","PeriodicalId":50558,"journal":{"name":"Echocardiography-A Journal of Cardiovascular Ultrasound and Allied Techniques","volume":"42 6","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Echocardiography-A Journal of Cardiovascular Ultrasound and Allied Techniques","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/echo.70201","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Acute and chronic ischemic cardiomyopathy (ICM) still represents a leading cause of morbidity and mortality. Cardiac magnetic resonance (CMR) imaging plays a central role in the diagnosis and management of ICM, offering detailed visualization of cardiac structures and function. The evolving role of artificial intelligence (AI) in enhancing CMR exams, from acquisition to prognosis, is rapidly expanding in clinical practice, particularly in CMR of patients with ICM, emphasizing the integration of AI algorithms to optimize imaging workflows in standard protocols. Advanced AI models enable more efficient and faster image acquisition, reducing artifacts and enhancing accuracy, even offering free-breathing sequences. In post-processing, AI allows for the segmentation and quantification of cardiac parameters, facilitating precise assessment of volumes, myocardial scarring, and perfusion abnormalities, which are critical parameters in ICM. Moreover, AI-driven analysis provides robust prognostic insights by predicting adverse outcomes, such as heart failure and arrhythmias, through comprehensive data integration and pattern recognition. Looking forward, the future of AI in CMR promises further advancements in personalized medicine, with AI algorithms continually improving in accuracy and clinical applicability. This review will analyze the role of AI in increasing diagnostic accuracy, optimizing workflows, and improving prognosis in patients with ICM.

从获得到预后:人工智能在缺血性心肌病心脏磁共振成像评价中的作用
急性和慢性缺血性心肌病(ICM)仍然是发病率和死亡率的主要原因。心脏磁共振(CMR)成像在ICM的诊断和治疗中起着核心作用,提供了心脏结构和功能的详细可视化。人工智能(AI)在增强CMR检查方面的作用不断发展,从获取到预后,在临床实践中迅速扩大,特别是在ICM患者的CMR中,强调了人工智能算法的整合,以优化标准方案中的成像工作流程。先进的人工智能模型能够更高效、更快地获取图像,减少人工制品,提高准确性,甚至提供自由呼吸序列。在后处理中,人工智能允许对心脏参数进行分割和量化,有助于精确评估体积、心肌疤痕和灌注异常,这些都是ICM的关键参数。此外,人工智能驱动的分析通过全面的数据集成和模式识别,通过预测心力衰竭和心律失常等不良后果,提供了强大的预后见解。展望未来,随着人工智能算法在准确性和临床适用性方面的不断提高,人工智能在CMR中的应用有望在个性化医疗方面取得进一步进展。本文将分析人工智能在提高ICM患者的诊断准确性、优化工作流程和改善预后方面的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.40
自引率
6.70%
发文量
211
审稿时长
3-6 weeks
期刊介绍: Echocardiography: A Journal of Cardiovascular Ultrasound and Allied Techniques is the official publication of the International Society of Cardiovascular Ultrasound. Widely recognized for its comprehensive peer-reviewed articles, case studies, original research, and reviews by international authors. Echocardiography keeps its readership of echocardiographers, ultrasound specialists, and cardiologists well informed of the latest developments in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信