Distributed estimation of surface sediment size in paraglacial and periglacial environments using drone photogrammetry

IF 2.8 3区 地球科学 Q2 GEOGRAPHY, PHYSICAL
Gerardo Zegers, Masaki Hayashi, Alex Garcés
{"title":"Distributed estimation of surface sediment size in paraglacial and periglacial environments using drone photogrammetry","authors":"Gerardo Zegers,&nbsp;Masaki Hayashi,&nbsp;Alex Garcés","doi":"10.1002/esp.70093","DOIUrl":null,"url":null,"abstract":"<p>Grain-size analysis offers insights into geological processes and landform dynamics. Traditional grain-size sampling methods are labour intensive and offer limited spatial coverage, posing challenges in paraglacial and periglacial environments characterized by large spatial variability in sediment sizes. This study introduces a new workflow that combines structure-from-motion, image segmentation and texture-based optical granulometry techniques to estimate surface grain size in paraglacial and periglacial environments efficiently. Utilizing high-resolution orthomosaics (ground sampling distance <span></span><math>\n <semantics>\n <mrow>\n <mo>∼</mo>\n </mrow>\n <annotation>$$ \\sim $$</annotation>\n </semantics></math>8 mm) and Cellpose, a deep-learning image segmentation model, the new workflow achieves high-accuracy grain-size distributions (GSDs) with low errors. These GSDs, along with lower resolution orthomosaics (ground sampling distance <span></span><math>\n <semantics>\n <mrow>\n <mo>∼</mo>\n </mrow>\n <annotation>$$ \\sim $$</annotation>\n </semantics></math>30 mm), are used to train SediNet—a machine-learning framework—to predict GSDs accurately from <span></span><math>\n <semantics>\n <mrow>\n <mn>340</mn>\n <mo>×</mo>\n <mn>340</mn>\n </mrow>\n <annotation>$$ 340\\times 340 $$</annotation>\n </semantics></math> pixel tiles. Tested across six alpine basins in the Canadian Rockies and a rock glacier in Italy, the model demonstrates effectiveness and accuracy, promising advancements in geoscientific research and the understanding of paraglacial and periglacial dynamics.</p>","PeriodicalId":11408,"journal":{"name":"Earth Surface Processes and Landforms","volume":"50 7","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/esp.70093","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth Surface Processes and Landforms","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/esp.70093","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Grain-size analysis offers insights into geological processes and landform dynamics. Traditional grain-size sampling methods are labour intensive and offer limited spatial coverage, posing challenges in paraglacial and periglacial environments characterized by large spatial variability in sediment sizes. This study introduces a new workflow that combines structure-from-motion, image segmentation and texture-based optical granulometry techniques to estimate surface grain size in paraglacial and periglacial environments efficiently. Utilizing high-resolution orthomosaics (ground sampling distance $$ \sim $$ 8 mm) and Cellpose, a deep-learning image segmentation model, the new workflow achieves high-accuracy grain-size distributions (GSDs) with low errors. These GSDs, along with lower resolution orthomosaics (ground sampling distance $$ \sim $$ 30 mm), are used to train SediNet—a machine-learning framework—to predict GSDs accurately from 340 × 340 $$ 340\times 340 $$  pixel tiles. Tested across six alpine basins in the Canadian Rockies and a rock glacier in Italy, the model demonstrates effectiveness and accuracy, promising advancements in geoscientific research and the understanding of paraglacial and periglacial dynamics.

利用无人机摄影测量法对冰缘和冰缘环境中地表沉积物大小的分布估计
粒度分析提供了对地质过程和地貌动力学的见解。传统的粒度采样方法是劳动密集型的,而且空间覆盖范围有限,这对以沉积物粒度空间变异性大为特征的冰旁和冰周环境构成了挑战。本文介绍了一种新的工作流程,该流程结合了运动结构、图像分割和基于纹理的光学粒度测量技术,可以有效地估计冰旁和冰周环境中的表面粒度。利用高分辨率正形图像(地面采样距离~ $$ \sim $$ 8 mm)和Cellpose(一种深度学习图像分割模型),新的工作流程实现了精度高、误差低的粒度分布(gsd)。这些gsd与较低分辨率的正形图(地面采样距离~ $$ \sim $$ 30 mm)一起用于训练sedinet(一种机器学习框架),以便从340 × 340 $$ 340\times 340 $$像素块中准确预测gsd。在加拿大落基山脉的六个高山盆地和意大利的一个岩石冰川上进行了测试,该模型显示了有效性和准确性,有望在地球科学研究和对冰旁和冰缘动力学的理解方面取得进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Earth Surface Processes and Landforms
Earth Surface Processes and Landforms 地学-地球科学综合
CiteScore
6.40
自引率
12.10%
发文量
215
审稿时长
4 months
期刊介绍: Earth Surface Processes and Landforms is an interdisciplinary international journal concerned with: the interactions between surface processes and landforms and landscapes; that lead to physical, chemical and biological changes; and which in turn create; current landscapes and the geological record of past landscapes. Its focus is core to both physical geographical and geological communities, and also the wider geosciences
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信