{"title":"Optimal Hybrid Fault Tolerant Control With Voltage Balancing for IPOS DAB Converters","authors":"Chong Zhang, Jie Zhu, Xiaogang Ding, Samson Shenglong Yu, Dongsheng Yu","doi":"10.1049/pel2.70062","DOIUrl":null,"url":null,"abstract":"<p>The input parallel output series connected dual active bridge (DAB) converter is a typical galvanically isolated converter for a wide output voltage range in many applications, such as charging piles for electric vehicles or solar energy storage systems. Open circuit fault (OCF) is an operation accident of power switches that occurs in DAB converters, and the faulty DAB module is degraded to a semi-DAB converter. In this work, by analyzing three operation modes and the impact of the current stress/power ratio, an optimal hybrid fault-tolerant control strategy is proposed. In this control method, DAB converters are operated under zero voltage switching/zero current switching under minimum inductor current stress without DC bias current. The proposed OCF fault-tolerant control strategy helps the DAB converter maintain stable operation under OCF occurrences. A voltage balancing method considering OCF and feedback-loop competition is also designed to balance the output voltages of faulty and non-faulty. Prototype experimental results verify the correctness and effectiveness of the proposed control strategy.</p>","PeriodicalId":56302,"journal":{"name":"IET Power Electronics","volume":"18 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/pel2.70062","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Power Electronics","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/pel2.70062","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The input parallel output series connected dual active bridge (DAB) converter is a typical galvanically isolated converter for a wide output voltage range in many applications, such as charging piles for electric vehicles or solar energy storage systems. Open circuit fault (OCF) is an operation accident of power switches that occurs in DAB converters, and the faulty DAB module is degraded to a semi-DAB converter. In this work, by analyzing three operation modes and the impact of the current stress/power ratio, an optimal hybrid fault-tolerant control strategy is proposed. In this control method, DAB converters are operated under zero voltage switching/zero current switching under minimum inductor current stress without DC bias current. The proposed OCF fault-tolerant control strategy helps the DAB converter maintain stable operation under OCF occurrences. A voltage balancing method considering OCF and feedback-loop competition is also designed to balance the output voltages of faulty and non-faulty. Prototype experimental results verify the correctness and effectiveness of the proposed control strategy.
期刊介绍:
IET Power Electronics aims to attract original research papers, short communications, review articles and power electronics related educational studies. The scope covers applications and technologies in the field of power electronics with special focus on cost-effective, efficient, power dense, environmental friendly and robust solutions, which includes:
Applications:
Electric drives/generators, renewable energy, industrial and consumable applications (including lighting, welding, heating, sub-sea applications, drilling and others), medical and military apparatus, utility applications, transport and space application, energy harvesting, telecommunications, energy storage management systems, home appliances.
Technologies:
Circuits: all type of converter topologies for low and high power applications including but not limited to: inverter, rectifier, dc/dc converter, power supplies, UPS, ac/ac converter, resonant converter, high frequency converter, hybrid converter, multilevel converter, power factor correction circuits and other advanced topologies.
Components and Materials: switching devices and their control, inductors, sensors, transformers, capacitors, resistors, thermal management, filters, fuses and protection elements and other novel low-cost efficient components/materials.
Control: techniques for controlling, analysing, modelling and/or simulation of power electronics circuits and complete power electronics systems.
Design/Manufacturing/Testing: new multi-domain modelling, assembling and packaging technologies, advanced testing techniques.
Environmental Impact: Electromagnetic Interference (EMI) reduction techniques, Electromagnetic Compatibility (EMC), limiting acoustic noise and vibration, recycling techniques, use of non-rare material.
Education: teaching methods, programme and course design, use of technology in power electronics teaching, virtual laboratory and e-learning and fields within the scope of interest.
Special Issues. Current Call for papers:
Harmonic Mitigation Techniques and Grid Robustness in Power Electronic-Based Power Systems - https://digital-library.theiet.org/files/IET_PEL_CFP_HMTGRPEPS.pdf