Capillary force and concentration gradient promote the bioprocessing-inspired formation of ultralong fluorapatite nanorods under confinement†

IF 6 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yonglang Yu, Ping Yuan, Zhengyi Fu and Zhaoyong Zou
{"title":"Capillary force and concentration gradient promote the bioprocessing-inspired formation of ultralong fluorapatite nanorods under confinement†","authors":"Yonglang Yu, Ping Yuan, Zhengyi Fu and Zhaoyong Zou","doi":"10.1039/D5QM00137D","DOIUrl":null,"url":null,"abstract":"<p >Crystallization within small volumes of solutions rather than bulk solutions is a common phenomenon found during material synthesis and biomineralization processes. However, the driving forces for mass transport and crystallization in confined environments remain elusive. Herein, inspired by the intrafibrillar collagen mineralization process, we investigate the infiltration and crystallization mechanisms of fluorapatite (FAP) within confined channels by comparing anodic aluminum oxide and track-etched templates with different surface properties. The results demonstrate that similar to intrafibrillar collagen mineralization, capillary force, along with a specific interaction between the confined channel surface and mineral precursors, is the main driving force for the initial infiltration of liquid precursors into confined channels, leading to the nucleation of FAP nanocrystals on the surface of the channels. We elucidate the critical role of negatively charged polyacrylic acid in promoting the formation of liquid precursors for successful infiltration into confined channels and controlling crystallization kinetics within the channels. The formation of FAP nanorods, followed by further promoting ion diffusion <em>via</em> a concentration gradient, resulted from the lower local concentration surrounding the FAP crystals. Furthermore, FAP nanocrystals exhibit progressive alignment along the channel direction during the subsequent crystal growth stage, and ultralong FAP nanorods with a length of more than 25 μm could be obtained. The collective findings underscore the pivotal role of the structure and surface properties of nanoscale confined environments in controlling the infiltration and crystallization pathways of inorganic crystals and establishing a foundation for the controlled synthesis of biomimetic materials under confinement.</p>","PeriodicalId":86,"journal":{"name":"Materials Chemistry Frontiers","volume":" 12","pages":" 1857-1869"},"PeriodicalIF":6.0000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry Frontiers","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/qm/d5qm00137d","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Crystallization within small volumes of solutions rather than bulk solutions is a common phenomenon found during material synthesis and biomineralization processes. However, the driving forces for mass transport and crystallization in confined environments remain elusive. Herein, inspired by the intrafibrillar collagen mineralization process, we investigate the infiltration and crystallization mechanisms of fluorapatite (FAP) within confined channels by comparing anodic aluminum oxide and track-etched templates with different surface properties. The results demonstrate that similar to intrafibrillar collagen mineralization, capillary force, along with a specific interaction between the confined channel surface and mineral precursors, is the main driving force for the initial infiltration of liquid precursors into confined channels, leading to the nucleation of FAP nanocrystals on the surface of the channels. We elucidate the critical role of negatively charged polyacrylic acid in promoting the formation of liquid precursors for successful infiltration into confined channels and controlling crystallization kinetics within the channels. The formation of FAP nanorods, followed by further promoting ion diffusion via a concentration gradient, resulted from the lower local concentration surrounding the FAP crystals. Furthermore, FAP nanocrystals exhibit progressive alignment along the channel direction during the subsequent crystal growth stage, and ultralong FAP nanorods with a length of more than 25 μm could be obtained. The collective findings underscore the pivotal role of the structure and surface properties of nanoscale confined environments in controlling the infiltration and crystallization pathways of inorganic crystals and establishing a foundation for the controlled synthesis of biomimetic materials under confinement.

Abstract Image

毛细管力和浓度梯度促进了约束条件下超长氟磷灰石纳米棒的生物处理诱导形成
在材料合成和生物矿化过程中,在小体积溶液而不是散装溶液中结晶是一种常见的现象。然而,在受限环境中质量输运和结晶的驱动力仍然难以捉摸。在此,受纤维内胶原矿化过程的启发,我们通过比较具有不同表面性质的阳极氧化铝和轨迹蚀刻模板,研究了氟磷灰石(FAP)在受限通道内的浸润和结晶机制。结果表明,与纤维纤维内胶原矿化类似,毛细管力以及受限通道表面与矿物前体之间的特定相互作用是液体前体最初渗入受限通道的主要驱动力,导致通道表面的FAP纳米晶体成核。我们阐明了带负电荷的聚丙烯酸在促进液体前体的形成以成功渗透到受限通道和控制通道内的结晶动力学方面的关键作用。FAP纳米棒的形成,随后通过浓度梯度进一步促进离子扩散,这是由于FAP晶体周围的局部浓度较低。此外,在随后的晶体生长阶段,FAP纳米晶体沿通道方向逐渐排列,可以获得长度大于25 μm的超长FAP纳米棒。这些共同的发现强调了纳米尺度密闭环境的结构和表面性质在控制无机晶体的渗透和结晶途径方面的关键作用,并为密闭环境下仿生材料的受控合成奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Chemistry Frontiers
Materials Chemistry Frontiers Materials Science-Materials Chemistry
CiteScore
12.00
自引率
2.90%
发文量
313
期刊介绍: Materials Chemistry Frontiers focuses on the synthesis and chemistry of exciting new materials, and the development of improved fabrication techniques. Characterisation and fundamental studies that are of broad appeal are also welcome. This is the ideal home for studies of a significant nature that further the development of organic, inorganic, composite and nano-materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信