Limin Wang, Xi Wu, Tao Cheng, Han Xue, Bernd Abel, Jia Li, Jianfeng Li, Liying Ma, Jia Ding, Wenqi Wang, Shaopeng Fu, Yong Hou, Kailang Wang, La Zhu and Xubin Lu
{"title":"Deposition of N-doped graphene and its mechanism study via in situ mass spectrometry†","authors":"Limin Wang, Xi Wu, Tao Cheng, Han Xue, Bernd Abel, Jia Li, Jianfeng Li, Liying Ma, Jia Ding, Wenqi Wang, Shaopeng Fu, Yong Hou, Kailang Wang, La Zhu and Xubin Lu","doi":"10.1039/D5QM00013K","DOIUrl":null,"url":null,"abstract":"<p >Nitrogen doping of graphene is one of the most effective methods to open the zero-band gap of graphene, presenting a promising approach to modify its electronic structure. In this report, we introduce a novel method for growing large-area N-doped graphene directly on copper foil using atmospheric-pressure chemical vapor deposition (APCVD) using the pyrolysis of acetonitrile. <em>In situ</em> mass spectrometry combined with APCVD gave insights into the contribution and behavior of different species during the formation of N-doped graphene. Density functional theory calculations, paired with experimental results, were employed to study the growth mechanism of N-doped graphene with acetonitrile. Furthermore, the synthesized N-doped graphene was investigated as an electrode material for vanadium redox flow batteries (VRFB), focusing on its catalytic activity for the V(<small>IV</small>)/V(<small>V</small>) redox reaction. These findings not only deepen our understanding of the growth mechanisms of N-doped graphene but also provide a foundation for its application in energy storage systems, offering guidance for the synthesis of doped graphene and carbon nanotubes for advanced electrode materials in VRFB and beyond.</p>","PeriodicalId":86,"journal":{"name":"Materials Chemistry Frontiers","volume":" 12","pages":" 1933-1944"},"PeriodicalIF":6.0000,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry Frontiers","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/qm/d5qm00013k","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Nitrogen doping of graphene is one of the most effective methods to open the zero-band gap of graphene, presenting a promising approach to modify its electronic structure. In this report, we introduce a novel method for growing large-area N-doped graphene directly on copper foil using atmospheric-pressure chemical vapor deposition (APCVD) using the pyrolysis of acetonitrile. In situ mass spectrometry combined with APCVD gave insights into the contribution and behavior of different species during the formation of N-doped graphene. Density functional theory calculations, paired with experimental results, were employed to study the growth mechanism of N-doped graphene with acetonitrile. Furthermore, the synthesized N-doped graphene was investigated as an electrode material for vanadium redox flow batteries (VRFB), focusing on its catalytic activity for the V(IV)/V(V) redox reaction. These findings not only deepen our understanding of the growth mechanisms of N-doped graphene but also provide a foundation for its application in energy storage systems, offering guidance for the synthesis of doped graphene and carbon nanotubes for advanced electrode materials in VRFB and beyond.
期刊介绍:
Materials Chemistry Frontiers focuses on the synthesis and chemistry of exciting new materials, and the development of improved fabrication techniques. Characterisation and fundamental studies that are of broad appeal are also welcome.
This is the ideal home for studies of a significant nature that further the development of organic, inorganic, composite and nano-materials.