Cysteine-responsive, cyano-functionalized acenaphthopyrazine derivative for tumor microenvironment modulation-based chemotherapy sensitization and side effect reduction†

IF 6.4 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Hanyi Gao, Yiliang Qin, Jiayi Li, Shuhong Xiong, Rong Sun, Xia He, Yaxin Wu, Ying Tian, Yi Yuan and Rong Hu
{"title":"Cysteine-responsive, cyano-functionalized acenaphthopyrazine derivative for tumor microenvironment modulation-based chemotherapy sensitization and side effect reduction†","authors":"Hanyi Gao, Yiliang Qin, Jiayi Li, Shuhong Xiong, Rong Sun, Xia He, Yaxin Wu, Ying Tian, Yi Yuan and Rong Hu","doi":"10.1039/D5QM00229J","DOIUrl":null,"url":null,"abstract":"<p >Drug resistance and serious side effects are persistent obstacles in chemotherapy. Tumor microenvironment modulation is an emerging strategy to sensitize chemotherapy; however, the relevant side effects caused by chemotherapeutic drugs remain non-negligible. Herein, we constructed a cysteine-reactive, cyano-functionalized acenaphthopyrazine derivative for cisplatin sensitization and side effect reduction by regulating the tumor microenvironment. The developed cyano-functionalized acenaphthopyrazine derivative exhibited appropriate reactivity toward cysteine <em>via</em> an addition reaction. The incorporation of the cyano group not only improved the cellular uptake efficiency of cisplatin but also suppressed the drug inactivation behavior of tumor cells by reducing the expression of GSH within tumor cells. Moreover, selective inhibition of tumor cells was achieved due to the differing GSH dependence between normal and tumor cells. Most importantly, <em>in vivo</em> experiments revealed that the combination of the cyano-functionalized acenaphthopyrazine derivative with cisplatin could efficiently reduce liver and kidney damage during treatment. Our results demonstrated that cysteine consumption could serve as a general strategy for chemotherapy sensitization.</p>","PeriodicalId":86,"journal":{"name":"Materials Chemistry Frontiers","volume":" 12","pages":" 1839-1849"},"PeriodicalIF":6.4000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry Frontiers","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/qm/d5qm00229j","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Drug resistance and serious side effects are persistent obstacles in chemotherapy. Tumor microenvironment modulation is an emerging strategy to sensitize chemotherapy; however, the relevant side effects caused by chemotherapeutic drugs remain non-negligible. Herein, we constructed a cysteine-reactive, cyano-functionalized acenaphthopyrazine derivative for cisplatin sensitization and side effect reduction by regulating the tumor microenvironment. The developed cyano-functionalized acenaphthopyrazine derivative exhibited appropriate reactivity toward cysteine via an addition reaction. The incorporation of the cyano group not only improved the cellular uptake efficiency of cisplatin but also suppressed the drug inactivation behavior of tumor cells by reducing the expression of GSH within tumor cells. Moreover, selective inhibition of tumor cells was achieved due to the differing GSH dependence between normal and tumor cells. Most importantly, in vivo experiments revealed that the combination of the cyano-functionalized acenaphthopyrazine derivative with cisplatin could efficiently reduce liver and kidney damage during treatment. Our results demonstrated that cysteine consumption could serve as a general strategy for chemotherapy sensitization.

Abstract Image

半胱氨酸反应,氰基功能化的阿萘唑吡嗪衍生物用于肿瘤微环境调节的化疗增敏和减少副作用
耐药和严重的副作用是化疗的长期障碍。肿瘤微环境调节是一种新兴的化疗增敏策略;然而,化疗药物引起的相关副作用仍然不可忽视。本研究构建了一种半胱氨酸反应性、氰基功能化的阿萘唑吡嗪衍生物,通过调节肿瘤微环境实现顺铂致敏和降低副作用。所制得的氰基功能化苊吡嗪衍生物通过加成反应对半胱氨酸表现出适当的反应活性。氰基组的掺入不仅提高了顺铂的细胞摄取效率,而且通过降低肿瘤细胞内GSH的表达抑制了肿瘤细胞的药物失活行为。此外,由于正常细胞和肿瘤细胞对谷胱甘肽的依赖性不同,可以实现对肿瘤细胞的选择性抑制。最重要的是,体内实验表明,氰基功能化阿那萘吡嗪衍生物与顺铂联合使用可有效减少治疗过程中肝脏和肾脏的损害。我们的研究结果表明,半胱氨酸的消耗可以作为化疗致敏的一般策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Chemistry Frontiers
Materials Chemistry Frontiers Materials Science-Materials Chemistry
CiteScore
12.00
自引率
2.90%
发文量
313
期刊介绍: Materials Chemistry Frontiers focuses on the synthesis and chemistry of exciting new materials, and the development of improved fabrication techniques. Characterisation and fundamental studies that are of broad appeal are also welcome. This is the ideal home for studies of a significant nature that further the development of organic, inorganic, composite and nano-materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信