Hybrid Multi-Class Token Vision Transformer Convolutional Network for DOA Estimation

IF 3.2 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Yuxuan Xie;Aifei Liu;Xinyu Lu;Dufei Chong
{"title":"Hybrid Multi-Class Token Vision Transformer Convolutional Network for DOA Estimation","authors":"Yuxuan Xie;Aifei Liu;Xinyu Lu;Dufei Chong","doi":"10.1109/LSP.2025.3573949","DOIUrl":null,"url":null,"abstract":"In this letter, we propose an efficient hybrid model, named HMC-ViT, that combines a convolutional neural network (CNN) with a multi-class token vision transformer (ViT) to address the problem of direction of arrival (DOA) estimation. HMC-ViT integrates the local feature extraction capability of CNN with the global feature extraction capability of ViT to enhance DOA estimation performance and improve the computational efficiency of ViT. Additionally, the ViT component employs multiple class tokens in parallel to generate spatial spectra for sub-regions, further enhancing the model's performance. Simulation results demonstrate that the proposed method outperforms existing approaches under low signal-to-noise ratio (SNR) scenarios.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":"32 ","pages":"2279-2283"},"PeriodicalIF":3.2000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11015750/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In this letter, we propose an efficient hybrid model, named HMC-ViT, that combines a convolutional neural network (CNN) with a multi-class token vision transformer (ViT) to address the problem of direction of arrival (DOA) estimation. HMC-ViT integrates the local feature extraction capability of CNN with the global feature extraction capability of ViT to enhance DOA estimation performance and improve the computational efficiency of ViT. Additionally, the ViT component employs multiple class tokens in parallel to generate spatial spectra for sub-regions, further enhancing the model's performance. Simulation results demonstrate that the proposed method outperforms existing approaches under low signal-to-noise ratio (SNR) scenarios.
DOA估计的混合多类令牌视觉变换卷积网络
在这篇文章中,我们提出了一种高效的混合模型HMC-ViT,它将卷积神经网络(CNN)与多类令牌视觉转换器(ViT)相结合,以解决到达方向(DOA)估计问题。HMC-ViT将CNN的局部特征提取能力与ViT的全局特征提取能力相结合,增强了DOA估计性能,提高了ViT的计算效率。此外,ViT组件采用多个类令牌并行生成子区域的空间光谱,进一步提高了模型的性能。仿真结果表明,该方法在低信噪比情况下优于现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Signal Processing Letters
IEEE Signal Processing Letters 工程技术-工程:电子与电气
CiteScore
7.40
自引率
12.80%
发文量
339
审稿时长
2.8 months
期刊介绍: The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信