Voltage Support Capacity Improvement for Wind Farms with Reactive Power Substitution Control

IF 6.9 2区 工程技术 Q2 ENERGY & FUELS
Yuegong Li;Guorong Zhu;Jianghua Lu;Hua Geng
{"title":"Voltage Support Capacity Improvement for Wind Farms with Reactive Power Substitution Control","authors":"Yuegong Li;Guorong Zhu;Jianghua Lu;Hua Geng","doi":"10.17775/CSEEJPES.2024.07190","DOIUrl":null,"url":null,"abstract":"Generally, voltage support at the point of common coupling (PCC) of a wind farm is achieved through centralized static var generators (SVGs). Since the reactive power requirements occupy their capacity in a steady state, the reactive power support capacity of the SVG is limited during high voltage ride through (HVRT) or low voltage ride through (LVRT). While wind turbines can provide voltage support in accordance with the grid code, their responses are usually delayed due to communication and transmission lags. To enhance the dynamic performance of wind farms during fault ride-through, a reactive power substitution (RPS) control strategy is proposed in this paper. In a steady state, this RPS control method preferentially utilizes the remaining capacity of wind turbines to substitute for the output of the SVG. Considering differences in terminal voltage characteristics and operating conditions, this RPS control method employs a particle swarm optimization (PSO) algorithm to ensure that wind turbines can provide their optimal reactive power support capacity. When the grid voltage swells or drops, the SVG has a sufficient reactive power reserve to support the grid quickly. This paper utilizes a regional power grid incorporating two wind farms connected to different buses as a case study to validate this RPS control strategy.","PeriodicalId":10729,"journal":{"name":"CSEE Journal of Power and Energy Systems","volume":"11 3","pages":"999-1017"},"PeriodicalIF":6.9000,"publicationDate":"2025-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11006434","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CSEE Journal of Power and Energy Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11006434/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Generally, voltage support at the point of common coupling (PCC) of a wind farm is achieved through centralized static var generators (SVGs). Since the reactive power requirements occupy their capacity in a steady state, the reactive power support capacity of the SVG is limited during high voltage ride through (HVRT) or low voltage ride through (LVRT). While wind turbines can provide voltage support in accordance with the grid code, their responses are usually delayed due to communication and transmission lags. To enhance the dynamic performance of wind farms during fault ride-through, a reactive power substitution (RPS) control strategy is proposed in this paper. In a steady state, this RPS control method preferentially utilizes the remaining capacity of wind turbines to substitute for the output of the SVG. Considering differences in terminal voltage characteristics and operating conditions, this RPS control method employs a particle swarm optimization (PSO) algorithm to ensure that wind turbines can provide their optimal reactive power support capacity. When the grid voltage swells or drops, the SVG has a sufficient reactive power reserve to support the grid quickly. This paper utilizes a regional power grid incorporating two wind farms connected to different buses as a case study to validate this RPS control strategy.
无功替代控制下风电场电压支持能力的改进
通常,风电场的共耦合点(PCC)的电压支持是通过集中式静态无功发电机(svg)来实现的。由于无功功率需求在稳定状态下占据其容量,因此SVG在高压穿越(HVRT)或低压穿越(LVRT)期间的无功支持能力受到限制。虽然风力涡轮机可以根据电网规范提供电压支持,但由于通信和传输滞后,它们的响应通常会延迟。为了提高风电场在故障穿越过程中的动态性能,提出了一种无功替代控制策略。在稳态下,该RPS控制方法优先利用风力发电机的剩余容量替代SVG的输出。考虑到终端电压特性和运行条件的差异,该RPS控制方法采用粒子群优化(PSO)算法,保证风电机组能够提供最优的无功支持能力。当电网电压上升或下降时,SVG具有足够的无功储备来快速支持电网。本文利用一个区域电网,将两个风电场连接到不同的母线作为案例研究来验证这种RPS控制策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.80
自引率
12.70%
发文量
389
审稿时长
26 weeks
期刊介绍: The CSEE Journal of Power and Energy Systems (JPES) is an international bimonthly journal published by the Chinese Society for Electrical Engineering (CSEE) in collaboration with CEPRI (China Electric Power Research Institute) and IEEE (The Institute of Electrical and Electronics Engineers) Inc. Indexed by SCI, Scopus, INSPEC, CSAD (Chinese Science Abstracts Database), DOAJ, and ProQuest, it serves as a platform for reporting cutting-edge theories, methods, technologies, and applications shaping the development of power systems in energy transition. The journal offers authors an international platform to enhance the reach and impact of their contributions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信