{"title":"Roper-Suffridge type extension operators for univalent mappings revisited","authors":"Hidetaka Hamada , Gabriela Kohr , Mirela Kohr","doi":"10.1016/j.jmaa.2025.129763","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>f</em> be a normalized univalent function on the unit disc <em>U</em>, and let <span><math><mi>α</mi><mo>,</mo><mi>β</mi><mo>∈</mo><mi>R</mi></math></span>. We consider a family of operators <span><math><msub><mrow><mi>Ψ</mi></mrow><mrow><mi>α</mi><mo>,</mo><mi>β</mi></mrow></msub></math></span> that extend <em>f</em> to biholomorphic mappings defined on the unit ball <em>B</em> of a complex Hilbert space <span><math><mi>H</mi></math></span> into <span><math><mi>H</mi></math></span>, and they are given by <span><math><msub><mrow><mi>Ψ</mi></mrow><mrow><mi>α</mi><mo>,</mo><mi>β</mi></mrow></msub><mo>(</mo><mi>f</mi><mo>)</mo><mo>(</mo><mi>z</mi><mo>)</mo><mo>=</mo><mrow><mo>(</mo><mi>f</mi><mo>(</mo><msub><mrow><mi>z</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo><mo>,</mo><mi>w</mi><msup><mrow><mo>(</mo><mfrac><mrow><mi>f</mi><mo>(</mo><msub><mrow><mi>z</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></mrow><mrow><msub><mrow><mi>z</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></mfrac><mo>)</mo></mrow><mrow><mi>α</mi></mrow></msup><msup><mrow><mo>(</mo><msup><mrow><mi>f</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>(</mo><msub><mrow><mi>z</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo><mo>)</mo></mrow><mrow><mi>β</mi></mrow></msup><mo>)</mo></mrow></math></span>, where, for a fixed unit vector <span><math><msub><mrow><mi>e</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>∈</mo><mi>H</mi></math></span>, we use the notation <span><math><mi>z</mi><mo>=</mo><mo>(</mo><msub><mrow><mi>z</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mi>w</mi><mo>)</mo></math></span> if <span><math><mi>z</mi><mo>=</mo><msub><mrow><mi>z</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>e</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mi>w</mi></math></span> and <em>w</em> is orthogonal to <span><math><msub><mrow><mi>e</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>. In the case <span><math><mi>α</mi><mo>=</mo><mn>0</mn></math></span> and <span><math><mi>β</mi><mo>=</mo><mn>1</mn><mo>/</mo><mn>2</mn></math></span> we obtain the Roper-Suffridge extension operator. Until now, it is only known that for the pairs <span><math><mo>(</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>)</mo><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> such that <span><math><mn>0</mn><mo>≤</mo><mi>α</mi><mo>≤</mo><mn>1</mn></math></span>, <span><math><mn>0</mn><mo>≤</mo><mi>β</mi><mo>≤</mo><mn>1</mn><mo>/</mo><mn>2</mn></math></span> and <span><math><mi>α</mi><mo>+</mo><mi>β</mi><mo>≤</mo><mn>1</mn></math></span>, <span><math><msub><mrow><mi>Ψ</mi></mrow><mrow><mi>α</mi><mo>,</mo><mi>β</mi></mrow></msub><mo>(</mo><mi>f</mi><mo>)</mo></math></span> can be embedded as the initial element of a normal Loewner chain on <em>B</em> for any normalized univalent function <em>f</em> on <em>U</em>. In this paper, we describe a closed domain <em>D</em> in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> such that for <span><math><mo>(</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>)</mo><mo>∈</mo><mi>D</mi></math></span>, <span><math><msub><mrow><mi>Ψ</mi></mrow><mrow><mi>α</mi><mo>,</mo><mi>β</mi></mrow></msub><mo>(</mo><mi>f</mi><mo>)</mo></math></span> can be embedded as the initial element of a normal Loewner chain on <em>B</em> for any normalized univalent function <em>f</em> on <em>U</em>. The closed domain <em>D</em> contains the above mentioned closed subset defined by <span><math><mn>0</mn><mo>≤</mo><mi>α</mi><mo>≤</mo><mn>1</mn></math></span>, <span><math><mn>0</mn><mo>≤</mo><mi>β</mi><mo>≤</mo><mn>1</mn><mo>/</mo><mn>2</mn></math></span> and <span><math><mi>α</mi><mo>+</mo><mi>β</mi><mo>≤</mo><mn>1</mn></math></span>, and also it contains points <span><math><mo>(</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>)</mo></math></span> such that <span><math><mi>α</mi><mo><</mo><mn>0</mn></math></span> and/or <span><math><mi>β</mi><mo><</mo><mn>0</mn></math></span>. For the proof of the main results, we use a new method which is different from the methods developed in the papers by Graham, Hamada, Kohr and Kohr in 2020 and Graham, Hamada, Kohr and Suffridge in 2002. As a corollary, we obtain that for any <span><math><mo>(</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>)</mo><mo>∈</mo><mi>D</mi></math></span>, <span><math><msub><mrow><mi>Ψ</mi></mrow><mrow><mi>α</mi><mo>,</mo><mi>β</mi></mrow></msub></math></span> preserves starlikeness, that is, if <em>f</em> is a normalized starlike function on <em>U</em>, then <span><math><msub><mrow><mi>Ψ</mi></mrow><mrow><mi>α</mi><mo>,</mo><mi>β</mi></mrow></msub><mo>(</mo><mi>f</mi><mo>)</mo></math></span> is a starlike mapping on <em>B</em>. We also show that if <span><math><mo>(</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>)</mo><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>∖</mo><mo>{</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>/</mo><mn>2</mn><mo>)</mo><mo>}</mo></math></span>, then the operator <span><math><msub><mrow><mi>Ψ</mi></mrow><mrow><mi>α</mi><mo>,</mo><mi>β</mi></mrow></msub></math></span> does not preserve convexity.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"552 1","pages":"Article 129763"},"PeriodicalIF":1.2000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X2500544X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let f be a normalized univalent function on the unit disc U, and let . We consider a family of operators that extend f to biholomorphic mappings defined on the unit ball B of a complex Hilbert space into , and they are given by , where, for a fixed unit vector , we use the notation if and w is orthogonal to . In the case and we obtain the Roper-Suffridge extension operator. Until now, it is only known that for the pairs such that , and , can be embedded as the initial element of a normal Loewner chain on B for any normalized univalent function f on U. In this paper, we describe a closed domain D in such that for , can be embedded as the initial element of a normal Loewner chain on B for any normalized univalent function f on U. The closed domain D contains the above mentioned closed subset defined by , and , and also it contains points such that and/or . For the proof of the main results, we use a new method which is different from the methods developed in the papers by Graham, Hamada, Kohr and Kohr in 2020 and Graham, Hamada, Kohr and Suffridge in 2002. As a corollary, we obtain that for any , preserves starlikeness, that is, if f is a normalized starlike function on U, then is a starlike mapping on B. We also show that if , then the operator does not preserve convexity.
期刊介绍:
The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions.
Papers are sought which employ one or more of the following areas of classical analysis:
• Analytic number theory
• Functional analysis and operator theory
• Real and harmonic analysis
• Complex analysis
• Numerical analysis
• Applied mathematics
• Partial differential equations
• Dynamical systems
• Control and Optimization
• Probability
• Mathematical biology
• Combinatorics
• Mathematical physics.