Roper-Suffridge type extension operators for univalent mappings revisited

IF 1.2 3区 数学 Q1 MATHEMATICS
Hidetaka Hamada , Gabriela Kohr , Mirela Kohr
{"title":"Roper-Suffridge type extension operators for univalent mappings revisited","authors":"Hidetaka Hamada ,&nbsp;Gabriela Kohr ,&nbsp;Mirela Kohr","doi":"10.1016/j.jmaa.2025.129763","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>f</em> be a normalized univalent function on the unit disc <em>U</em>, and let <span><math><mi>α</mi><mo>,</mo><mi>β</mi><mo>∈</mo><mi>R</mi></math></span>. We consider a family of operators <span><math><msub><mrow><mi>Ψ</mi></mrow><mrow><mi>α</mi><mo>,</mo><mi>β</mi></mrow></msub></math></span> that extend <em>f</em> to biholomorphic mappings defined on the unit ball <em>B</em> of a complex Hilbert space <span><math><mi>H</mi></math></span> into <span><math><mi>H</mi></math></span>, and they are given by <span><math><msub><mrow><mi>Ψ</mi></mrow><mrow><mi>α</mi><mo>,</mo><mi>β</mi></mrow></msub><mo>(</mo><mi>f</mi><mo>)</mo><mo>(</mo><mi>z</mi><mo>)</mo><mo>=</mo><mrow><mo>(</mo><mi>f</mi><mo>(</mo><msub><mrow><mi>z</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo><mo>,</mo><mi>w</mi><msup><mrow><mo>(</mo><mfrac><mrow><mi>f</mi><mo>(</mo><msub><mrow><mi>z</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></mrow><mrow><msub><mrow><mi>z</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></mfrac><mo>)</mo></mrow><mrow><mi>α</mi></mrow></msup><msup><mrow><mo>(</mo><msup><mrow><mi>f</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>(</mo><msub><mrow><mi>z</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo><mo>)</mo></mrow><mrow><mi>β</mi></mrow></msup><mo>)</mo></mrow></math></span>, where, for a fixed unit vector <span><math><msub><mrow><mi>e</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>∈</mo><mi>H</mi></math></span>, we use the notation <span><math><mi>z</mi><mo>=</mo><mo>(</mo><msub><mrow><mi>z</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mi>w</mi><mo>)</mo></math></span> if <span><math><mi>z</mi><mo>=</mo><msub><mrow><mi>z</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>e</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mi>w</mi></math></span> and <em>w</em> is orthogonal to <span><math><msub><mrow><mi>e</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>. In the case <span><math><mi>α</mi><mo>=</mo><mn>0</mn></math></span> and <span><math><mi>β</mi><mo>=</mo><mn>1</mn><mo>/</mo><mn>2</mn></math></span> we obtain the Roper-Suffridge extension operator. Until now, it is only known that for the pairs <span><math><mo>(</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>)</mo><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> such that <span><math><mn>0</mn><mo>≤</mo><mi>α</mi><mo>≤</mo><mn>1</mn></math></span>, <span><math><mn>0</mn><mo>≤</mo><mi>β</mi><mo>≤</mo><mn>1</mn><mo>/</mo><mn>2</mn></math></span> and <span><math><mi>α</mi><mo>+</mo><mi>β</mi><mo>≤</mo><mn>1</mn></math></span>, <span><math><msub><mrow><mi>Ψ</mi></mrow><mrow><mi>α</mi><mo>,</mo><mi>β</mi></mrow></msub><mo>(</mo><mi>f</mi><mo>)</mo></math></span> can be embedded as the initial element of a normal Loewner chain on <em>B</em> for any normalized univalent function <em>f</em> on <em>U</em>. In this paper, we describe a closed domain <em>D</em> in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> such that for <span><math><mo>(</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>)</mo><mo>∈</mo><mi>D</mi></math></span>, <span><math><msub><mrow><mi>Ψ</mi></mrow><mrow><mi>α</mi><mo>,</mo><mi>β</mi></mrow></msub><mo>(</mo><mi>f</mi><mo>)</mo></math></span> can be embedded as the initial element of a normal Loewner chain on <em>B</em> for any normalized univalent function <em>f</em> on <em>U</em>. The closed domain <em>D</em> contains the above mentioned closed subset defined by <span><math><mn>0</mn><mo>≤</mo><mi>α</mi><mo>≤</mo><mn>1</mn></math></span>, <span><math><mn>0</mn><mo>≤</mo><mi>β</mi><mo>≤</mo><mn>1</mn><mo>/</mo><mn>2</mn></math></span> and <span><math><mi>α</mi><mo>+</mo><mi>β</mi><mo>≤</mo><mn>1</mn></math></span>, and also it contains points <span><math><mo>(</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>)</mo></math></span> such that <span><math><mi>α</mi><mo>&lt;</mo><mn>0</mn></math></span> and/or <span><math><mi>β</mi><mo>&lt;</mo><mn>0</mn></math></span>. For the proof of the main results, we use a new method which is different from the methods developed in the papers by Graham, Hamada, Kohr and Kohr in 2020 and Graham, Hamada, Kohr and Suffridge in 2002. As a corollary, we obtain that for any <span><math><mo>(</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>)</mo><mo>∈</mo><mi>D</mi></math></span>, <span><math><msub><mrow><mi>Ψ</mi></mrow><mrow><mi>α</mi><mo>,</mo><mi>β</mi></mrow></msub></math></span> preserves starlikeness, that is, if <em>f</em> is a normalized starlike function on <em>U</em>, then <span><math><msub><mrow><mi>Ψ</mi></mrow><mrow><mi>α</mi><mo>,</mo><mi>β</mi></mrow></msub><mo>(</mo><mi>f</mi><mo>)</mo></math></span> is a starlike mapping on <em>B</em>. We also show that if <span><math><mo>(</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>)</mo><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>∖</mo><mo>{</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>/</mo><mn>2</mn><mo>)</mo><mo>}</mo></math></span>, then the operator <span><math><msub><mrow><mi>Ψ</mi></mrow><mrow><mi>α</mi><mo>,</mo><mi>β</mi></mrow></msub></math></span> does not preserve convexity.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"552 1","pages":"Article 129763"},"PeriodicalIF":1.2000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X2500544X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let f be a normalized univalent function on the unit disc U, and let α,βR. We consider a family of operators Ψα,β that extend f to biholomorphic mappings defined on the unit ball B of a complex Hilbert space H into H, and they are given by Ψα,β(f)(z)=(f(z1),w(f(z1)z1)α(f(z1))β), where, for a fixed unit vector e1H, we use the notation z=(z1,w) if z=z1e1+w and w is orthogonal to e1. In the case α=0 and β=1/2 we obtain the Roper-Suffridge extension operator. Until now, it is only known that for the pairs (α,β)R2 such that 0α1, 0β1/2 and α+β1, Ψα,β(f) can be embedded as the initial element of a normal Loewner chain on B for any normalized univalent function f on U. In this paper, we describe a closed domain D in R2 such that for (α,β)D, Ψα,β(f) can be embedded as the initial element of a normal Loewner chain on B for any normalized univalent function f on U. The closed domain D contains the above mentioned closed subset defined by 0α1, 0β1/2 and α+β1, and also it contains points (α,β) such that α<0 and/or β<0. For the proof of the main results, we use a new method which is different from the methods developed in the papers by Graham, Hamada, Kohr and Kohr in 2020 and Graham, Hamada, Kohr and Suffridge in 2002. As a corollary, we obtain that for any (α,β)D, Ψα,β preserves starlikeness, that is, if f is a normalized starlike function on U, then Ψα,β(f) is a starlike mapping on B. We also show that if (α,β)R2{(0,1/2)}, then the operator Ψα,β does not preserve convexity.
重新讨论了单值映射的Roper-Suffridge类型扩展算子
设f是单位圆盘U上的归一化一元函数,设α,β∈R。我们考虑将f扩展到复希尔伯特空间H的单位球B上定义为H的生物全纯映射的算子族Ψα,β,它们由Ψα,β(f)(z)=(f(z1) z1),w(f(z1)z1)α(f ' (z1))β给出,其中,对于固定单位向量e1∈H,如果z=z1e1+w且w正交于e1,我们使用z=(z1,w)。当α=0, β=1/2时,我们得到了Roper-Suffridge扩展算子。直到现在,只有知道双(α,β)∈R2这样0≤α≤1,0≤β≤1/2和α+β≤1,Ψα,β(f)可以作为正常的初始元素嵌入Loewner链在B对任何规范化单叶函数f,在本文中,我们描述一个封闭域D等R2(α,β)∈D,Ψα,β(f)可以作为正常的初始元素嵌入Loewner链B对任何规范化单叶函数f上美国闭域D包含上述闭子集定义为0≤α≤1,0≤β≤1/2和α+β≤1,也包含点(α,β)使得α<;0和/或β<;0。对于主要结果的证明,我们使用了一种不同于Graham, Hamada, Kohr和Kohr在2020年和Graham, Hamada, Kohr和Suffridge在2002年的论文中开发的方法的新方法。作为推论,我们得到对于任意(α,β)∈D, Ψα,β保持星形,即如果f是U上的归一化星形函数,则Ψα,β(f)是b上的星形映射。我们还证明了如果(α,β)∈R2∈{(0,1/2)},则算子Ψα,β不保持凸性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信